350 rub
Journal Radioengineering №12 for 2020 г.
Article in number:
Features of the trajectory of an electron in a non-uniform electromagnetic wave according to a numerical simulation
Type of article: scientific article
DOI: 10.18127/j00338486-202012(23)-04
UDC: 539.12:537.63:537.868
Authors:

V.B. Lapshin 1, A.A. Skubachevskii 2, A.S. Bugaev 3

1,2 Moscow Institute of Physics and Technology (Dolgoprudny, Russia)

3 V.A. Kotel’nikov Institute of Radio-engineering and Electronics of RAS (Moscow, Russia)

1 lapshin-vb1@mail.ru, 2 antonious007@yandex.ru, 3 bugaev@cos.ru

Abstract:

The paper presents the results of studying the motion of an electron in a non-uniform electromagnetic wave using an exact numerical solution of a nonlinear system of equations describing the motion of an electron. An approach is proposed that makes it possible to simulate a wide range of non-uniform electromagnetic waves generated by a superposition of plane monochromatic electromagnetic waves arbitrarily directed relative to each other. The features of the behavior of an electron in a non-uniform electromagnetic wave are studied depending on the initial and boundary conditions.

Pages: 30-40
For citation

Lapshin V.B., Skubachevskii A.A., Bugaev A.S. Features of the trajectory of an electron in a non-uniform electro- magnetic wave according to a numerical simulation. Radiotekhnika. 2020. V. 84. № 12(23). P. 30−.  DOI: 10.18127/j00338486-202012(23)-04 (In Russian).

References
  1. VolkovD.M. ElektronvpoleploskihnepolyarizovannyhelektromagnitnyhvolnstochkizreniyauravneniyaDiraka. ZHETF. 1937. T. 7. Vyp. 2. S. 1286−1289 (In Russian).
  2. Bagrov V.G., Gitman D.M. The Dirac equation and its solutions. Boston:Walter De Gruyter, 2014. 440 p.
  3. Bolotovskij B.M., Serov A.V. Osobennosti dvizheniya chastic v elektromagnitnoj volne. UFN. 2003. T. 173. № 6. S. 667−678 (In Russian). 
  4. Landau L.D., Lifshic E.M. Teoriya polya M.: Nauka. 1973. 507 s. (In Russian).
  5. Gaponov A.V., Mille, M.A. Potential wells for charged particles in a high-frequency electromagnetic field. JETP. 1958. V. 7(1). Р. 168–169.
  6. Serov A.V. Proporcional'naya E4 ponderomotornaya sila, dejstvuyushchaya na zaryazhennuyu chasticu, peresekayushchuyu neodnorodnuyu elektromagnitnuyu volnu. Kvantovaya elektronika. 1998. T. 25. № 3. S. 197–200 (In Russian). 
  7. Serov A.V. Raspredeleniya zaryazhennyh chastic, inzhektirovannyh tochechnym istochnikom v ploskuyu elektromagnitnuyu volnu. Kratkie soobshcheniya po fizike. 2002. № 8. S. 27−33 (In Russian). 
  8. Andreev S.N., Makarov V.P., Ruhadze A.A. O dvizhenii chasticy v ploskoj monohromaticheskoj elektromagnitnoj volne. Kvantovaya elektronika. 2009. T. 39. № 1. S. 68−72 (In Russian). 
  9. Andreev S.N., Eremeicheva YU.I., Makarov V.P., Ruhadze A.A., Tarakanov V.P. O dvizhenii zaryazhennoj chasticy v ploskoj kvazimonohromaticheskoj elektromagnitnoj volne. Preprinty IOF im. A.M. Prohorova. 2013. № 3. 31 s. (In Russian).
  10. Buc V.A., Buc A.V. Dinamika zaryazhennyh chastic v pole intensivnoj poperechnoj elektromagnitnoj volny. ZHETF. 1996. T. 110.  Vyp. 3(9). S. 818−831 (In Russian).
  11. Kopytov G. F., Martynov A. A., Akincov N. S. Ekologicheskij vestnik nauchnyh centrov CHES. 2014. № 2. S. 39–43 (In Russian).
  12. Lapshin V.B., Skubachevskij A.A., Belinskij A.V., Bugaev A.S. Spektr izlucheniya i traektoriya zaryazhennoj chasticy v pole neodnorodnoj elektromagnitnoj volny. Doklady akademii nauk. 2019. T. 488. № 6. S. 1−5 (In Russian).
  13. Fedorov M.V., Goreslavsky S.P., Letokhov V.S. Ponderomotive forces and stimulated Compton scattering of free electrons in a laser field. Phys. Rev. E. U.S.: American Physical Society. 1997. V. 55. № 1. Р. 1015−1027. 
  14. Lapshin V.B., Kotonaeva N.G., Perminova E.S. Sopostavlenie moshchnostej tormoznogo i ciklotronnogo izluchenij v ionosfernoj plazme pri ee nagreve moshchnymi KV-radiovolnami. Elektromagnitnye volny i elektronnye sistemy. 2016. T. 21. № 9. S. 43–48 (In Russian).
Date of receipt: 07.10.2020