350 rub
Journal Radioengineering №11 for 2020 г.
Article in number:
Automated measuring system for investigating temperature dependence of low-frequency noise spectra in electronic elements and structures
Type of article: scientific article
DOI: 10.18127/j00338486-202011(21)-07
UDC: 53.084.6, 53.084.872-876
Authors:

A.V. Ermachikhin – Ph.D. (Phys.-Math.), Associate Professor of Department of Micro- and Nanoelectronics

V.G. Litvinov – Dr.Sc. (Phys.-Math.), Associate Professor, Leading Research Scientist,
Head of Department of Micro- and Nanoelectronics

E.P. Trusov – Post-graduate Student аспирант of Department of Micro- and Nanoelectronics

S.A. Kostryukov – Ph.D. (Phys.-Math.), Engineer of Department of Micro- and Nanoelectronics

Abstract:

Formulation of the problem. The use of noise as a source of information on the semiconductor barrier structures and devices is a promising direction in the diagnostics of semiconductor devices. It is necessary to measure noise spectra over a wide temperature range to obtain reliable results.

Goal. Development of a measuring and analytical complex for the study of the low-frequency noise spectrum temperature dependence.

Results. In this paper a measuring analytical complex for low-frequency noise spectroscopy is presented. The measuring complex is adapted for the automated study of low-frequency noise in electronic elements and structures in the frequency range 0.00110000 Hz with the constant bias voltage till 50 V and in the temperature range 7-500 К.

Practical significance. The results of testing the operation of the measuring complex are given as an example of the semiconductor barrier structure study.

Pages: 55-64
References
  1. Zhigal'skij G.P. Fluktuacii i shumy v jelektronnyh tverdotel'nyh priborah. M.: Fizmatlit. 2012. 512 s.  (In Russian).
  2. Razumenko D.V. Nizkochastotnye shumy jelektronnyh komponentov kak instrument dlja diagnostiki vnutrennih defektov. Komponenty i tehnologii. 2008. № 9. S. 168-174. (In Russian).
  3. Bukingem M. Shumy v jelektronnyh priborah i sistemah: Per. c angl. M.N. Devjatkov. M. 1986. 399 s.  (In Russian).
  4. Kogan Sh.M. Nizkochastotnyj tokovyj shum so spektrom 1/f v tverdyh telah. Uspehi fizicheskih nauk. 1985. T. 145. № 2. S. 285-328. (In Russian).
  5. Schottky W. Über spontane stromschwankungen in verschiedenen elektrizitatsleitern. Ann. der Phys. 1918. V. 57. P. 541-567.
  6. Ermachihin A.V., Kostrjukov S.A., Litvinov V.G., Rybin N.B. Issledovanie shumovyh svojstv i jelektronnyh sostojanij dioda Shottki na osnove geterostruktury InGaAs/GaAs s kvantovoj jamoj. Vestnik Rjazanskogo gosudarstvennogo radio-tehnicheskogo universiteta. 2012. № 3 41. 2012. S. 98-103.
  7. Kumar A., Heilmann M., Latzel M., Kapoor R., Sharma I., Göbelt M., Christiansen S.H., Kumar V., Singh R. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes. Scientific Reports. 2016. P. 27553.
  8. Song Y., Jeong H., Chung S., Ahn G. H., Kim T.-Y., Jang J., Yoo D., Jeong H., Javey A., Lee T. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Scientific Reports. 2016. P. 33967.
  9. Luan X., Huang Y., Li Y., McMillan J. F., Zheng J., Huang S.-W., Hsieh P.-C., Gu T., Wang Di, Hati A., Howe D. A, Wen G., Yu M., Lo G., Kwong D.-L., Wong C.W. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset. Scientific Reports. 2014. V. 4. P. 6842. DOI: 10.1038/srep06842.
  10. Essick J. Hands-On Introduction to LabVIEW for Scientists and Engineers. Oxford University Press. 2012.
  11. Ermachihin A.V., Litvinov V.G. LabVIEW v sovremennoj industrii izmerenij (obzor). Informacionnye tehnologii. 2014. № 3. S. 25-29 (In Russian).
  12. Zhao M., Huang J.X., Wong M.H., Tang Y.M., Ong C.W. Rev. Versatile computer-controlled system for characterization of gas sensing materials. Scient. Instrum. 2011. V. 82. Iss. 10. P. 105001.
  13. Das A.D., Mahapatra K.K. Real-Time Implementation of Fast Fourier Transform (FFT) and Finding the Power Spectrum Using LabVIEW and CompactRIO. International Conference on Communication Systems and Network Technologies. 2013. P. 169-173.
  14. Litvinov V.G., Ermachikhin A.V., Kusakin D.S., Vishnyakov N.V., Maslov A.D., Semenov A.R. Measurement complex to investigate electrophysical and noise characteristics of semiconductor micro- and nanostructures. International Conference on Noise and Fluctuations (ICNF). 2017. P. 1-4.
  15. Ugrjumov R.B., Shaposhnik A.V., Voishhev V.S. Metodika izmerenija nizkochastotnyh tokovyh shumov v poluprovodnikovyh sensorah gazov. PTJe. 2004. № 3. S. 85-91 (In Russian).
  16. Ciura Ł., Kolek A., Gawron W., Kowalewski A., Stanaszek D. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System. Metrol. Meas. Syst. 2014. V. 21. № 3. P. 461-472.
  17. Balandin A. Low-frequency 1/f noise in graphene devices. Nature Nanotechnology. V. 8. Iss. 8. 2013. P. 549-555 (In Russian).
  18. Zhigal'skij G.P. Shum vida 1/f i nelinejnye jeffekty v tonkih metallicheskih plenkah. Uspehi fizicheskih nauk. 1997. T. 167. № 6.
    S. 623-648 (In Russian).
  19. Scholz F., Hwang J.M., Schroder D.K. Low frequency noise and DLTS as semiconductor device characterization tools. Solid-State Electron. 1988. V. 31. № 2. P. 205-218.
  20. Yau L.D., Sah C.T. Theory and experiments of low-frequency generation-recombination noise in MOS-transistors. IEEE Trans. Electron. Devices. 1969. V. ED-16. № 2. P.170-177.
  21. Holomina T.A. Osobennosti processov generacii NCh-shuma v poluprovodnikovyh bar'ernyh strukturah. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2012. № 39-2. S. 117-121 (In Russian).
  22. Holomina T.A., Kostrjukov S.A., Laktjushkin A.S. Issledovanie poluprovodnikovyh bar'ernyh struktur metodom spektroskopii nizkochastotnogo shuma. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2012. № 39-1. S. 74-78 (In Russian).
  23. Zhigal’skii G.P., Kholomina T.A. J. Excess noise and deep levels in GaAs detectors of nuclear particles and ionizing radiation. Commun. Technol. Electron. V. 60. № 6. P. 517-542.
  24. Ermachihin A.V., Litvinov V.G. Avtomatizirovannyj izmeritel'nyj kompleks tokovoj relaksacionnoj spektroskopii glubokih urovnej. Pribory i tehnika jeksperimenta. 2018. № 2. S. 118-123 (In Russian).
  25. Litvinov V.G., Ermachihin A.V., Kusakin D.S. DLTS issledovanie dioda Shottki na osnove geterostruktury InGaAs/GaAs s kvantovoj jamoj. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2013. № 44. S. 91-96 (In Russian).
  26. Zi S. Fizika poluprovodnikovyh priborov. Kn. 1. M.: Mir. 1984 (In Russian).
Date of receipt: 11.09.2020