M.V.Grachev – Junior Research Scientist, Department of Radio Engineering Devices
Yu.N. ParshinDr.Sc. (Eng.), Head of Department of Radio Engineering Devices
The research results show a noticeable increase in the efficiency of signal reception by multichannel radio systems with a mutual influence when using the optimal load impedances. The technical implementation of a load impedances optimization during operation requires the use of MEMS microwave technologies. The problem of the load impedances' technical implementation in a multichannel radio system with mutual influence are considered.
The aim of this work is to analyze the influence of errors in the optimal load impedances technical implementation on the signal-to-noise ratio and to assess the possibility of using modern technologies for tuning load impedances with the required accuracy.
Few approaches have been proposed for the design of multichannel systems using optimal load impedances. MEMS components have been researched to make it possible to implement the structure of adaptive load impedances in different signal-interference situations. The characteristics of the error in set the load impedances on the value of the signal-noise ratio investigated. Different ways of technical implementation for tunable active and reactive components of load impedances based on MEMS microwave technologies are considered. Methods for matching antenna elements with low-noise amplifiers are proposed: a priori and adaptive optimization of load impedances. The influence of the error in the load impedance values on the output signal-to-noise ratio of a multichannel radio system is investigated.
Thus the considered options for the optimal load impedances technical implementation in a multichannel radio system with a strong mutual influence allow matching the antenna system elements with low-noise amplifiers. That gives a significant gain in the signal-to-noise ratio output value, increases the signal reception efficiency, and reduces the requirements for the received signal power. For a given transmitter power, optimization of load impedances can increase the radio range. Analysis of various MEMS components for the implementation of adaptive load impedances showed that errors in setting the load impedances lead to a degradation of SNR by
0.17 dB compared to the values obtained at optimal values of load impedances.
Grachev M.V., Parshin Yu.N. Performance of the load impedances’ technical implementation in a multichannel radio system with mutual influence of channels. Radiotekhnika. 2020. V.84. № 11(21). P. 39−47. DOI: 10.18127/j00338486-202011(21)-05 (In Russian).
- Tanaka K., Kikuma N., Sakakibara K. Influence of mutual coupling between array elements in location estimation of radio sources using near-field DOA-matrix method. International symposium on antennas and propagation. 2016. P. 1024-1025.
- Warnick K. F., Belostotski L., Russer P. Minimizing the noise penalty due to mutual coupling for a receiving array. IEEE Transactions on antennas and propagation. 2009. V. 57. № 6. P. 1634-1644.
- Markov G.T., Sazonov D.M. Antenny: Uchebnik dlja studentov radiotehnicheskih special'nostej vuzov. Izd-e 2-e, pererab. i dop. M.: Jenergija. 1975. 528 s. (In Russian).
- Parshin Yu.N., Grachev M.V. Efficiency of the Angular Coordinate Estimation under the Action of Spatially Correlated Interferences and Mutual Influence of Spatial Channels. Proceeding of the 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe, Krasnodar Region, Russia. June 24-28 2019. P. 408-411.
- Grachev M.V., Parshin Ju.N. Jeffektivnost' optimal'nogo soglasovanija nagruzki mnogokanal'nogo radiotrakta v uslovijah dejstvija prostranstvenno korrelirovannyh shumov. XXIV Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». Voronezh: Nauchno-issledovatel'skie publikacii. 2018. T. 5. S. 295-300 (In Russian).
- Parshin Ju.N., Grachev M.V. Mnogojetapnaja rekonfiguriruemaja obrabotka signalov v prostranstvenno raspredelennoj radiosisteme. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2019.№67. S. 3-10 (In Russian).
- Burakov M.V. Geneticheskij algoritm: teorija i praktika: Ucheb. posobie. SPb: GUAP. 2008. 164 s. (In Russian).
- Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization. 1998. V. 9. № 1. P. 112-147.
- Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki: Vvedenie v teoriju. Per. s angl. M.: Radio i svjaz'. 1986. 448 s. (In Russian).
- Parshin Ju.N., Grachev M.V. Sravnitel'nyj analiz algoritmov poiska optimal'nogo znachenija nagruzochnyh impedansov mnogokanal'nyh radiosistem s vzaimnym vlijaniem. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2020. № 73. S. 1-9
(In Russian). - Belov L., Zhitnikova M. Mikrojelektromehanicheskie komponenty radiochastotnogo diapazona. Jelektronika: nauka, tehnologija, biznes. 2006. № 8. S. 18–25 (In Russian).
- Uttamchandani D. Wireless MEMS Networks and Applications. Woodhead Publishing Series in Electronic and Optical Materials. 2014.
- Reinke J., Fedder G.K., Mukherjee T. CMOS-MEMS 3-bit digital capacitors with tuning ratios greater than 60:1. IEEE Transactions on Microwave Theory Techniques. 2011. V. 59. № 5. P. 1238–1248.
- Shavezipur M., Khajepour A., Hashemi S.M. The application of structural nonlinearity in the development of linearly tunable MEMS capacitors. Journal of Micromechanics and Microengineering. 2008. № 3. P. 1-8.
- Katz S., Brouk I. High performance MEMS 0.18 μm RF-CMOS transformers. Microelectronics Journal. 2012. V. 43. P. 13-16.
- Sazonov D.M., Gridin A.N., Mishustin B.A. Ustrojstva SVCh. M.: Vysshaja shkola. 1981. 259 s. (In Russian).
- Majumder S., Lampen J., Morrison R., Maciel J. MEMS Switches. IEEE Instrumentation & Measurement Magazine. 2003. P. 12–15.