350 rub
Journal Radioengineering №11 for 2020 г.
Article in number:
Stability of a shielded bilateral dc gas discharge in a ring helium-neon laser
Type of article: scientific article
DOI: 10.18127/j00338486-202011(21)-04
UDC: 62-933.2:62-932.4:533.9
Authors:

V.V. Klimakov – Ph.D. (Eng.), Associate Professor of Department of Industrial Electronics
SPIN-код: 2185-8822

V.Ju. Mishin –Ph.D. (Eng.), Associate Professor of Department of Electronic Devices
SPIN-код: 6154-0270

D.A. Morozov – Ph.D. (Phys.-Math.), Associate Professor of Department of Electronic Devices
SPIN-код: 1859-7312

A.E. Serebrjakov – Ph.D. (Eng.),Associate Professor of Department of Electronic Devices
SPIN-код: 6279-5452

S.V. Ustinov – Lecturer

M.V. Chirkin – Dr.Sc. (Phys.-Math.), Professorof Department of Electronic Devices,
Honorary Worker of Higher Professional Education of the Russian Federation,
Laureate of the Ryazan Region Prize for Science and Technology
SPIN-код: 2622-3740

Abstract:

Problem statement. In modern inertial navigation systems, small-sized gyroscopes based on ring helium-neon lasers are used to measure angular displacements and angular velocities. The features of a low-pressure glow discharge in narrow channels as an electrical load are in the positive reactive and negative active components of its complex resistance, which creates a prerequisite for the excitation of self-oscillations as a result of the development of ionization instability. Earlier, a method was developed for determining the instability threshold of an electrical circuit, including a symmetric double-arm discharge in a ring helium-neon laser. The disadvantage of this method is that it does not take into account the effect on the stability of the displacement currents through the distributed capacitance between the discharge channel and the grounded shield, which is the metal body of the laser gyroscope.

Aim. Creation of a methodology for analyzing the influence of distributed electrical capacitance on the threshold for the development of instability in an electrical circuit, including a shielded direct current glow discharge.

Results. A method to determine electrical circuit stability threshold including symmetric bilateral discharge in a ring helium-neon laser taken into consideration distributed capacitance between positive discharge column and grounded metal laser gyroscope housing in a wide range of ambient temperature change has been developed. With the help of the method developed the dependency of ballast resistance critical values from the temperature characterizing electrical circuit instability limit has been determined. The comparison of the results with the data received on the model of positive column with lumped elements has been performed.

Practical significance. The results obtained form the basis for a reasonable choice of ballast resistance ratings for ring lasers, which ensures stable burning of a DC discharge over the entire operating temperature range.

Pages: 30-38
References
  1. Kuznecov A.G., Molchanov A.V., Chirkin M.V., Izmajlov E.A. Precizionnyj lazernyj giroskop dlja avtonomnoj inercial'noj navigacii. Kvantovaja jelektronika. 2015. T. 45. № 1. S. 78-88 (In Russian).
  2. Dao H.N., Klimakov V.V., Serebrjakov A.E., Mishin V.Ju., Molchanov A.V., Chirkin M.V. Nestacionarnnyj ionizacionnyj balans v dvuhplechevom razrjade i nestabil'nost' drejfa lazernogo giroskopa. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2018. № 66-2. S. 82-89 (In Russian).
  3. Ulitenko A.I., Klimakov V.V., Molchanov A.V., Chirkin M.V. Vyravnivanie temperaturnogo polja v besplatformennoj inercial'noj navigacionnoj sisteme na lazernyh giroskopah. Radiotehnika. 2012. № 3. S. 171-177 (In Russian).
  4. Molchanov A.V., Morozov D.A., Ustinov S.V., Chirkin M.V. Moduljacionnye issledovanija gazorazrjadnoj plazmy v gelij-neonovom lazere. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2015. № 54. Ch. 2. S. 115-120 (In Russian).
  5. Aleksandrov L.S., Perebjakin V.A., Stepanov V.A., Chirkin M.V. Dinamika prostranstvenno odnorodnoj plazmy razrjada v inertnyh gazah. Fizika plazmy. 1989. T. 15. № 4. S. 467-473 (In Russian).
  6. Morozov D.A., Stepanov V.A., Chirkin M.V. Rasprostranenie vozmushhenij v jekranirovannom kanale ionizirovannogo gaza. Izvestija akademii nauk. Serija fizicheskaja. 2000. T. 64. № 7. S. 1423-1430 (In Russian).
  7. Udal'cov B.V., Car'kov V.A. Issledovanie reaktivnyh kolebanij v razrjade simmetrichnogo dvuhanodnogoneon-gelievogo lazera. Radiotehnika i jelektronika. 1986. T. 31. № 5. S. 938-944 (In Russian).
  8. Chirkin M.V., Filatov D.S., Molchanov A.V., Osetrov I.V. Suppressing instability in the electric circuit of screened glow discharge. Proc. of 4-th International Conference «Plasma Physics and Plasma Technology». Minsk. 2003.V. 1. P. 84-87 (In Russian).
  9. Chirkin M.V., Ustinov S.V., Mishin V.Ju. Ustojchivost' simmetrichnogodvuhplechevogo razrjada postojannogo toka v kol'cevom gelij-neonovom lazere. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2019. № 69. S. 193-201 (In Russian).
  10. Morozov D.A., Stepanov V.A., Chirkin M.V.Generation of a fast ionization wave in a positive column of a nonsteady gas discharge. Plasma physics reports, 1998. V. 24. № 7. P. 606-611 (In Russian).
  11. Morozov D.A., Stepanov V.A., Chirkin M.V. Rasprostranenie vozmushhenij v jekranirovannom kanale ionizirovannogo gaza. Izvestija akademii nauk. Serija fizicheskaja. 2000. T. 64. № 7. S. 1423-1430 (In Russian).
  12. Ermachikhin A.V., Litvinov V.G. An automated measuring system for current deep-level transient spectroscopy. Instruments and Experimental Techniques. 2018. V. 61. № 2. P. 277-282 (In Russian).
Date of receipt: 15.09.2020