350 rub
Journal Radioengineering №10 for 2020 г.
Article in number:
Topological solution for a high-voltage power supply system for a communication satellite
Type of article: scientific article
DOI: 10.18127/j00338486-202010(19)-06
UDC: 621.31:629.78
Authors:

Yuri V. Krasnobaev − Dr.Sc. (Eng.), Professor,

Department of Automation Systems, Automated Control and Design,

Siberian Federal University, 

Institute of Space and Information Technology (Krasnoyarsk, Russia)

E-mail: YKrasnobaev@sfu-kras.ru

Oleg V. Nepomnyashcy − Ph.D. (Eng.), Associate Professor, Professor,

Head of Department of Computer Science,

Siberian Federal University, 

Institute of Space and Information Technology (Krasnoyarsk, Russia)

E-mail: 2955005@gmail.com

Valeriya N. Khaidukova − Student,

Department of Applied Physics and Space Technologies, 

Siberian Federal University, 

Institute of Space and Information Technology (Krasnoyarsk, Russia)

E-mail: valeriya_iks@mail.ru

Irina V. Solopko − Senior Lecturer,

Department of Computer Science, 

Department of Automation Systems, Automated Control and Design,

Siberian Federal University, 

Institute of Space and Information Technology (Krasnoyarsk, Russia)

E-mail: isolopko@sfu-kras.ru

Dmitriy A. Nedorezov − Student,

Department of Applied Physics and Space Technologies, 

Siberian Federal University, 

Institute of Space and Information Technology (Krasnoyarsk, Russia) E-mail: nedorezovd@mail.ru

Abstract:

Formulation of the problem. Currently, there are increased requirements for the quality of the output voltage of power supply systems (PSS) of communication satellites (CS) in static and dynamic modes of operation, as well as for the value of the permissible values of the output impedance of the PSS. Thus, the problem of reducing deviations of the output voltage of the PSS from a given stable value and the problem of providing the required values of the output impedance of the PSS are relevant.

Goal. It seems appropriate to find a topological solution to the PSS that allows you to combine the advantages of existing PSS and at the same time eliminate or minimize their disadvantages.

Results. The topology of a high-voltage power supply system for a communication satellite with a reduced number of stabilizing devices and simplified operation logic is proposed. The steady-state and transient modes of operation of the power supply system are considered and the advantages of the proposed topology are shown.

Practical significance. The power supply system with the proposed topology in comparison with the considered existing PSS has: − lower output impedance on the high-voltage output bus in all operating modes because the voltage at the output of the PSS is stabilized only by the RU;

− lower internal power consumption and increased reliability as a result of simplifying individual EPA nodes and EPA as a whole; − higher efficiency of energy-converting equipment in a number of operating modes.

Pages: 62-69
For citation

Krasnobaev Y.V., Nepomnyashchiy O.V., Khaidukova V.N., Solopko I.V., Nedorezov N.D. Topological solution for a high-voltage power supply system for a communication satellite. Radiotekhnika. 2020. V. 84. № 10(19). P. 62−69. DOI: 10.18127/j00338486-202010(19)-06 (In Russian).

References
  1. Krasnobaev Ju.V., Kudrjashov V.S., Chubar' A.V. Sravnitel'nyj analiz topologij sistem jelektropitanija kosmicheskih apparatov. Mezhvuz.sb. nauch. trudov «Informatika i sistemy upravlenija» / Otv. redaktor S.V. Chencov. Krasnojarsk: GU NII IPU. 2002. Vyp. 8. S. 34-41 (In Russian).
  2. Ivanchura V.I., Kapulin D.V., Krasnobaev Ju.V. Bystrodejstvujushhie impul'snye stabilizatory naprjazhenija. Krasnojarsk: Sib. feder. unt. 2011. 172 s. (In Russian).
  3. Patent № 2574565 S2 (RF), MPK H02J 7/00. Sistema jelektropitanija kosmicheskogo apparata s regulirovaniem moshhnosti solnechnoj batarei invertorno-transformatornym preobrazovatelem. Shinjakov Ju.A., Osipov A.V., Suncov S.B., Shkol'nyj V.N., Chernaja M.M.. Izobretenija. 2016. Bjul. № 4 (In Russian).
  4. Hartov V.V., Jevenov G.D., Kudrjashov V.S., Luk'janenko M.V. Sistemy jelektropitanija dlja bol'shih platform na geostacionarnoj orbite. Sb. nauch. trudov «Jelektronnye i jelektromehanicheskie sistemy». Novosibirsk: Nauka. 2007. S. 7–16 (In Russian).
  5. Nesterishin M.V., Kozlov R.V., Gordeev K.G., Soldatenko V.G., Il'in A.N., Klimenko E.V. Sistema jelektropitanija kosmicheskogo apparata. Sb. nauch. trudov «Jelektronnye i jelektromehanicheskie sistemy». Novosibirsk: Nauka. 2016. S. 8–12 (In Russian).
  6. Pozharkova I.N., Kapulin D.V. Metodika formirovanija trebovanij k vyhodnomu impedansu sistem jelektropitanija kosmicheskih apparatov. Aviakosmicheskoe priborostroenie. 2011. № 6. S. 12–16 (In Russian).
  7. Tishhenko A.K., Duplin N.I., Savenkov V.V. Analiz ustojchivosti razvetvlennyh sistem jelektropitanija postojannogo toka. Tezisy dokl. XVI nauch.-tehnich. konf. «Jelektronnye i jelektromehanicheskie sistemy i ustrojstva». Tomsk: NPC «Poljus». 2000. S. 35-37 (In Russian).
  8. Bojd O.U. Trebuemaja moshhnost' v nebol'shom kontejnere. Ajerokosmicheskaja tehnika. 1988. № 8. S. 122–124 (In Russian).
  9. Shinjakov Ju.A., Otto A.I., Osipov A.V., Chernaja M.M. Avtonomnaja jenergeticheskaja ustanovka s jekstremal'nym shagovym reguljatorom moshhnosti solnechnyh batarej. Al'ternativnaja jenergetika i jekologija. 2015. № (8-9). S. 12-18 (In Russian).
  10. Shinyakov Yu.A., Otto A.I. Design Procedure for Autonomous Photovoltaic Power Systems Based on the Calculation of Power Balance and Statistical Values
Date of receipt: 21.08.2020