350 rub
Journal Radioengineering №9 for 2019 г.
Article in number:
Ground wave propagation near sea–ice surface
Type of article: scientific article
DOI: 10.18127/j00338486-201909(13)-07
UDC: 621.396.961
Authors:

V.V. Akhiyarov – Ph.D.(Eng.), Senior Research Scientist, 

Kotel'nikov IRE of RAS (Moscow); 

Leading Engineer, JSC «SPC «SRI of Long-distance Radio Communication» (Moscow)

E-mail: vakhiyarov@gmail.com

Abstract:

The problem of the attenuation function calculation above inhomogeneous surface is considered. Brief historical review of the radio wave propagation theory is introduced, the famous Sommerfeld’s error, connected with surface wave propagation above homogeneous earth, is discussed. This error was due to the fact that the surface wave cannot be separated from the total solution based on normal mode analysis and later Sommerfeld admitted it himself. This error has been the reason for scientific discussions for several decades until it was corrected by Soviet scientists V.A. Fock and E.L. Feinberg. Later J.R. Wait showed that a surface wave is practically not excited above homogeneous earth using physically realized antenna height.

However, above sea surface covered with a layer of ice, a surface wave can propagate under certain conditions. In this case, the surface wave corresponds to the first term of the series in the V.A. Fock’s diffraction formula. However, when moving away from the source, the surface waves quickly decay, so there is the problem of the attenuation function calculation over the sea–ice surface.

The influence of ice thickness and electromagnetic wave frequency on the attenuation function is investigated. A comparison of the attenuation function for a flat and spherical earth model is produced and it is shown that the curvature of the earth does not affect on the surface wave attenuation (if this wave really propagates above the ice–sea surface). The dependences of the absolute value and phase of the normalized surface impedance on the frequency and on the thickness of ice are presented. It is obtained that the nature of the surface impedance can be in both inductive and capacitive. The real part of the relative dielectric permittivity of the underlying surface with impedance corresponding to the input impedance of the sea–ice is calculated. It is shown that the surface wave above the sea–ice effectively propagates only for large negative values of the real part of the relative permittivity of the underlying surface. Positive values correspond to homogeneous earth; therefore, the surface wave is practically not excited in this case.

Pages: 63-71
References
  1. Fok V.A. Problemy difraktsii i rasprostraneniya elektromagnitnykh voln. M.: Sov. radio. 1970. 520 s. (In Russian).
  2. Feynberg E.L. Rasprostranenie radiovoln vdol’ zemnoy poverkhnosti. Izd. 2-e. M.: Nauka. Fizmatlit. 1999. 496 s. (In Russian).
  3. Akhiyarov V.V. Difraktsiya metrovykh i detsimetrovykh radiovoln nad zemnoy poverkhnost’yu. Elektromagnitnye volny i elektronnye sistemy. 2006. T. 11. № 9. S. 28−32. (In Russian).
  4. Akhiyarov V.V. Rasprostranenie i rasseyanie radiovoln. Uspekhi sovremennoy radioelektroniki. 2008. № 12. S. 3−25. (In Russian).
  5. Makarov G.I., Novikov V.V., Rybachek S.T. Rasprostranenie elektromagnitnykh voln nad zemnoy poverkhnost’yu. M. Nauka. 1991. 196 s. (In Russian).
  6. Wait J.R. On the excitation of electromagnetic surface waves on a curved surface. IRE Transactions on antennas and propagation. 1960. V. 8. № 4. P. 445−448.
  7. Hill D.A., Wait J.R. Ground wave attenuation function for a spherical earth with arbitrary surface impedance. Radio Science. 1980. V. 15. № 3. P. 637−643.
  8. Wait J.R., Hill D.A. Excitation of the HF surface wave by vertical and horizontal antennas. Radio Science. 1979. V. 14. № 5.
    1. 767−780.
  9. Wait J.R. The ancient and modern history of EM ground-wave propagation. IEEE Antennas Propagation Magazine. 1998. V. 40. № 5.
    1. 7−24.
  10. Kukushkin A.V., Rukhadze A.A., Rukhadze K.Z. Ob usloviyakh sushchestvovaniya bystroy poverkhnostnoy volny. Uspekhi fizicheskikh nauk. 2012. T. 182. № 11. S. 1205−1215. (In Russian).
  11. Mandel’shtam L.I., Papaleksi N.D. O skorosti rasprostraneniya radiovoln. Uspekhi fizicheskikh nauk. 1944. T. 26. № 2. S. 144−168. (In Russian).
  12. Hill D.A., Wait J.R. Excitation of the Zenneck surface wave by a vertical aperture. Radio Science. 1978. V. 13. № 6. P. 969−977.
  13. Hill D.A., Wait J.R., HF Ground wave propagation over sea ice for a spherical earth model. IEEE Transaction on antennas and propagation. 1981. V. 29. № 3. P. 525−527.
  14. Hill D.A., Wait J.R. Excitation of the Zenneck surface wave by a vertical aperture. Radio Science. 1978. V. 13. № 6. P. 969−977.
  15. Knyazev B.A., Kuz’min A.V. Poverkhnostnye elektromagnitnye volny: ot vidimogo diapazona do mikrovoln. Vestnik NGU. Ser.: Fizika. 2017. T. 2. № 1. S. 108−122. (In Russian).
  16. Terminologiya rasprostraneniya radiovoln. Sborniki rekomenduemykh terminov. № 47. Pod red. A.A. Pistol’korsa. M:. Izd. AN SSSR. 1957. 28 s. (In Russian).
Date of receipt: 22 августа 2019 г.