350 rub
Journal Radioengineering №8 for 2019 г.
Article in number:
High-power liquid waveguide loads
Type of article: scientific article
DOI: 10.18127/j00338486-201908(12)-18
UDC: 621.372.8
Authors:

A.V. Vorobiev – Engineer, 

NIKA-Microwave, Ltd (Saratov)

E-mail: alexvorxx@mail.ru

B.M. Kats – Ph.D.(Eng.), Head of department, 

NIKA-Microwave, Ltd (Saratov)

E-mail: brs19520@yandex.ru

A.Yu. Kuptsov – Leading Design Engineer, 

NIKA-Microwave, Ltd (Saratov)

V.P. Meschanov – Honored Scientist of RF, Dr.Sc.(Eng.), Professor, 

Director of NIKA-Microwave, Ltd (Saratov)

E-mail: nika373@bk.ru

K.A. Sayapin – Engineer, 

NIKA-Microwave, Ltd (Saratov)

E-mail: sayapin.k.a@mail.ru

Abstract:

Waveguide matched loads are widely used in the final paths of electronic equipment. A particularly important task is the development of loads for high power paths. In this paper, the study of liquid waveguide matched loads of high power. The radio-absorbing element of the loads is distilled water located in the wedge-shaped cavity of a short-circuited waveguide segment. Radiotransparent plexiglass partition separates the absorbent liquid of the internal volume of the waveguide. Coordinated loads for waveguides of the WR112 type (channel section 28.499×12.624 mm) and WR229 (channel section 58.17×29.08 mm) were developed. Two prototypes of loads for a waveguide of the type WR112 were made. For the supply and removal of fluid body loads are provided with fittings. The experimentally obtained value of the return loss for the first sample of the load does not exceed −29 dB, for the second −28 dB in the frequency range 7…10 GHz. When the temperature of the liquid increases by 40° C, the return loss increases by no more than 4 dB, while the coordination level remains within acceptable limits (VSWR˂1,15). The main advantages of the proposed design of the agreed microwave load are the small dimensions, the use of non-deficient materials and the simplicity of the design compared to the known analogues.

Pages: 115-119
References
  1. Matsumoto H., Iino Y., Fujiwara C., Kabeya Z., Onda T. Experience on the high-power SiC microwave dummy-load using SiC absorber. Proceedings of the 1999 Particle Accelerator Conference. New York. 1999. P. 842−844.
  2. Sinkov Yu.A., Filippova D.R. Proektirovanie volnovodnykh nagruzok vysokogo urovnya SVCh-moshchnosti dlya volnovodnykh antennofidernykh traktov. Antenny. 2016. № 4(224). S. 47−50. (in Russian)
  3. Barnyakov A.M., Levichev A.E., Pivovarov I.L., Samoilov S.L. Razrabotka volnovodnykh nagruzok moshchnykh SVCh-ustroistv na osnove kompozitnykh materialov. Fizika elementarnykh chastits i atomnogo yadra. Pisma v EChAYa. 2018. T. 15. № 7(219). S. 903−907. (in Russian)
  4. Vorontsov A.I. i dr.. Elektronnaya tekhnika. Ser. II. Kontrolno-izmeritelnaya tekhnika. 1969. № 1(10). S. 3−11. (in Russian)
  5. Ives R.L., Mizuhara Y.M., Schumacher R.V., Pendleton R.P. High power water load for microwave and millimeter-wave radio frequency sources. US5949298. H01P 1/26. Filed: Oct. 23. 1997. Date of Patent: Sep. 7. 1999.
  6. Williams N.H. Microwave waveguide water load employing a quarter wave window of reduced characteristic impedance. US3544923. H01P 1/26. Original Filed Nov. 10. 1966. This application Oct. 30. 1969.
  7. Eves E., Yakovlev V. Analysis of operational regimes of a high power water load. Journal of Microwave Power & Electromagnetic Energy. 2002. V. 37. № 3. P. 127−144.
  8. Gorelova A.V. Zhidkostnaya SVCh soglasovannaya nagruzka. RU 2659963C1. H01P 1/26. 2006.01. Data podachi zayavki: 04.09.2017. Opublikovano: 04.07.2018. (in Russian)
Date of receipt: 26 июля 2019 г.