350 rub
Journal Radioengineering №8 for 2019 г.
Article in number:
Oscillations, waves and diffraction in two-dimensional conducting films: surface immitance equation
Type of article: scientific article
DOI: 10.18127/j00338486-201908(12)-03
UDC: 621.371
Authors:

M.V. Davidovich – Dr.Sc. (Phys.-Math.), Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky

E-mail: davidovichmv@info.sgu.ru

Abstract:

The paper deals with the immitance (impedance and admittance) integral and integro-differential equations on conducting twodimensional films described by surface conductivity. The main types of such equations are presented, as well as surface-volume equations for dielectric particles with a conducting two-dimensional shell. The methods of transformation of the integral equations allowing reduce the singularities of kernels are considered. A number of equations are obtained by mode matching technique. The equations are applied for surface plasmon-polaritons along graphene structures and for localized plasmons in fullerenes. The resonant frequencies of free oscillations of fullerenes, scattering and absorption cross sections, as well as the dispersion equations of various surface modes on two-dimensional electron gas structures inside dielectric substrates are obtained. We used еру surface conductivity based on the Cubo-Greenwood model, as well as plasma approximation for sigma and pi carbon electrons distributed over a thin layer of fullerene. For graphene conductivity, we also used dynamic tensor conductivity based on the Bhatnagar-Gross-Crook approximation, taking into account spatial dispersion. The results are in good agreements with photoionization of C60 and C20 fullerenes, presented in the literature on the basis of the density functional theory method.

Pages: 15-29
References
  1. Klimov V.V. Nanoplazmonika. M.: Fizmatlit. 2009. (in Russian)
  2. Novotnyi L., Kherkht B. Osnovy nanooptiki. M.: Fizmatlit. 2009. (in Russian)
  3. Rodrigo S.G. Optical Properties of Nanostructured Metallic Systems. Heidelberg, Dordrecht. London, New York: Springer. 2012.
  4. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Berlin, Heidelberg: Springer-Verlag. 1995.
  5. Balykin V.I., Melentev P.N. Optika i spektroskopiya edinichnoi plazmonnoi nanostruktury. UFN. 2018. T. 188. № 2. S. 143−168. (in Russian)
  6. Ming W., Blair S., Liu F. Quantum size effect on dielectric function of ultrathin metal film: A first-principles study of Al(111). J. Phys.: Condensed Matter. 2014. V. 26. № 50. P. 505302(1−6).
  7. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin, Heidelberg, London, Paris, Tokyo: SpringerVerlag. 1988.
  8. Kruglyak Yu.A. Nanoelektronika «snizu – vverkh». Odessa: TES. 2015. (in Russian)
  9. Hanson G.W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008. V. 103. P. 064302(1−8).
  10. Falkovsky L.A., Pershoguba S.S. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. V. 2007. V. 76. P. 153410(1−4).
  11. Falkovsky L.A., Varlamov A.A. Space-time dispersion of graphene conductivity. Eur. Phys. J. V. 2007. V. 56. P. 281−284.
  12. Falkovskii L.A. Opticheskie svoistva grafena i poluprovodnikov tipa A4B6. UFN. 2008. T. 178. № 9. S. 923−934. (in Russian)
  13. Lovat G., Hanson G.W., Araneo R., Burghignoli P. Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene. Phys. Rev. B. 2013. V. 87. P. 115429(1−11).
  14. Ryzhii V., Dubinov A.A., Otsuji T., Mitin V., Shur M.S. Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides. J. Appl. Phys. 2010. V. 107. P. 054505(1−5).
  15. Dubinov A.A., Aleshkin V.Y., Mitin V., Otsuji T., Ryzhii V. Terahertz surface plasmons in optically pumped graphene structures. J. Phys.: Condens. Matter. 2011. V. 23. P. 145302(1−8).
  16. Dingle R.B. The electrical conductivity of thin wires. Proc. R. Soc. London. 1950. V. A201. P. 545−560.
  17. Vainshtein L.A. Elektromagnitnye volny. M.: Radio i svyaz. 1988. (in Russian)
  18. Markov G.T., Chaplin A.F. Vozbuzhdenie elektromagnitnykh voln. M.: Radio i svyaz. 1983. (in Russian)
  19. Nefedov E.I., Sivov A.N. Elektrodinamika periodicheskikh struktur. M.: Nauka. 1977. (in Russian)
  20. Ilinskii A.S, Slepyan G.Ya. Kolebaniya i volny v elektrodinamicheskikh sistemakh s poteryami. M.: Izd-vo MGU. 1983. (in Russian)
  21. Slepyan G.Ya., Maksimenko S.A., Lakhtakia A. Yevtushenko O., Gusakov A.V. Electrodynamics of Carbon Nanotubes: Dynamic Conductivity, Impedance Boundary Conditions and Surface Wave Propagation. Phys. Rev. B. 1999. V. 60. № 24. P. 17136−17149.
  22. Polishchuk O.V., Popov V.V., Otsuzhi T. Sverkhizluchatelnoe usilenie teragertsovogo izlucheniya pri vozbuzhdenii plazmonnykh mod v invertirovannom grafene s planarnym raspredelennym breggovskim mikrorezonatorom. Fizika i tekhnika poluprovodnikov. 2015. T. 49. № 11. S. 1516−1520. (in Russian)
  23. Davidovich M.V. Analiz plazmonov i gomogenizatsiya v ploskosloistykh fotonnykh kristallakh i giperbolicheskikh metamaterialakh. ZhETF. 2016. T. 160. № 6. S. 1069−1083. (in Russian)
  24. Davidovich M.V. Analiz struktur fotoniki i nanoplazmoniki metodom integralnykh uravnenii. Naukoemkie tekhnologii. 2016. T. 17. № 5. S. 8−18. (in Russian)
  25. Davidovich M.V., Stefyuk Yu.V. Mody mnogosloinogo kontsentricheskogo sfericheskogo rezonatora. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2009. № 4. S. 18−27. (in Russian)
  26. Davidovich M.V. Uluchshenie samofiltratsii mod v polykh volnovodakh s mnogosloinoi magnitodielektricheskoi obolochkoi. Radiotekhnika i elektronika. 1994. T. 39. № 1. S. 53−61. (in Russian)
  27. Mie G. Beiträge zur Optik trüber Medien, speziell colloidaler Metallösurcgem. Annalen der Physik. 1908. V. 330. № 3. P. 377−445.
  28. Debye P. Der Lichtdruck auf Kugeln von beliebigem material. Annalen der Physik, Vierte Folge. V. 30. № 1. P. 57−136.
  29. Doicu A., Wriedt T., Eremin Y.A. Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs. Springer. 2006.
  30. Hergert W., Wriedt T. (Eds.). The Mie Theory. Basics and Applications. Berlin-Heidelberg: Springer-Verlag. 2012.
  31. Van de Khyulst G. Rasseyanie sveta malymi chastitsami. M.: IL. 1961. (in Russian)
  32. Born M., Volf E. Osnovy optiki. M.: Nauka. 1973. (in Russian)
  33. Gastine M., Courtois L., Dormann J.L. Electromagnetic Resonances of Free Dielectric Spheres. IEEE Trans. 1967. V. MTT-15. № 12. P. 694−700.
  34. Lebedev V.S., Medvedev A.S. Effekty plazmon-eksitonnogo vzaimodeistviya pri pogloshchenii i rasseyanii sveta dvukhsloinymi nanochastitsami metall/J-agregat. Kvantovaya elektronika. 2012. T. 42. № 8. S. 701−7013. (in Russian)
  35. Lebedev V.S., Medvedev A.S. Opticheskie svoistva trekhsloinykh metalloorganicheskikh nanochastits s vneshnei obolochkoi molekulyarnykh J-agregatov. Kvantovaya elektronika. 2013. T. 43. № 11. S. 1065−1077. (in Russian)
  36. Drukarev E.G., Mikhailov A.I. Fotoionizatsiya svyazannykh sistem pri vysokikh energiyakh. ZhETF. 2018. T. 153. № 6. S. 867−878. (in Russian)
  37. Farafonov V.G., Ustimov V.I. Rasseyanie sveta malymi mnogosloinymi chastitsami: obobshchennyi metod razdeleniya peremennykh. Optika i spektroskopiya. 2018. T. 124. № 2. S. 255−258. (in Russian)
  38. Ivanov V.K,, Kashenock G.Yu., Polozkov R.G., Solovyov A.V. Photoionization cross sections of the fullerenes C20 and C60 calculated in a simple spherical model. J. Phys. B: At. Mol. Opt. Phys. 2001. V. 34. № 21. P. L669.
  39. Ivanov V.K., Kashenok G.Yu., Polozkov R.G., Solovev A.V Metod rascheta sechenii fotoionizatsii fullerenov na osnove priblizhenii lokalnoi plotnosti i sluchainykh faz. ZhETF. 2003. T. 123. № 4. S. 744−756. (in Russian)
  40. Solov’yov A.V. Plasmon excitations in metal clusters and fullerenes. Int. J. Modern Phys. 2005. Vol. B 19. № 28. P. 4143−4184.
  41. Drukarev E.G., Mikhailov A.I. High-Energy Atomic Physics. Switzerland: Springer. 2016.
  42. Gildenburg V.B., Pavlichenko I.A. Poverkhnostnye i ob’emnye plazmony fullerena C60. Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo. 2013. T. 3. № 1. S. 79−83. (in Russian)
  43. Mikhailov S.A., Ziegler K. New electromagnetic mode in graphene. Phys. Rev. Lett. 2007. V. 99. P. 016803(1−4).
  44. Davidovich M.V. Plazmony v mnogosloinykh ploskosloistykh strukturakh. Kvantovaya elektronika. 2017. T. 47 № 6. S. 567−579. (in Russian)
  45. Davidovich M.V. Kommentarii k state «Plazmony v volnovodnykh strukturakh iz dvukh sloev grafena». Pisma v ZhETF. 2019. T. 109. № 11. S. 804−805. (in Russian)
Date of receipt: 26 июля 2019 г.