350 rub
Journal Radioengineering №7 for 2019 г.
Article in number:
Diamond based slow-wave structure for millimeter range TWT and its fabrication technology
Type of article: scientific article
DOI: 10.18127/j00338486-201907(10)-12
UDC: 621.382.323, 621.385.632
Authors:

E.A. Bogomolova – Leading engineer, JSC «RPC «Istok» named after Shokin» (Fryazino),

E-mail: yaea89@inbox.ru

A.V. Galdetskiy – Ph.D. in Radiophysics, Head of Department, JSC «RPC «Istok» named after Shokin» (Fryazino),  E-mail: galdetskiy@istokmw.ru

M.P. Dukhnovsky – Head of Department, JSC «RPC «Istok» named after Shokin» (Fryazino), E-mail: duhnovsky@istokmw.ru

A.K. Smirnova – Ph.D.(Eng), Head of laboratory, JSC «RPC «Istok» named after Shokin» (Fryazino),

E-mail: aksmirnova@istokmw.ru

V.A. Smirnov – Main Technologist, JSC «RPC «Istok» named after Shokin» (Fryazino),

E-mail: levberdon922@mail.ru

A.I. Korchagin – Ph.D.(Eng.), Leading Research Scientist, NIKA-Microwave, Ltd (Saratov)

E-mail: korchagin_aleksey@mail.ru

Abstract:

A new design of W-band TWT with slow wave structure (SWS) «meander on substrate» using suspended diamond substrates and based on available technologies (growing, precise dimensional treatment and metallization of CVD diamond wafers). Planar SWS is fabricated of two CVD diamond wafers mounted in rectangular waveguide. Wafers contain sets of slots and conductors forming meander line. Sheet electron beam is transported in channel between wafers. Considered SWS design differs from similar planar SWS by absence of «grounding» metallization on wafers, and meander is formed by galvanic deposition on surface of wafer and slots. SWS provides interaction impedance exceeding 20 Ohm in frequency band 5 GHz. For operating voltage 13 kV the SWS pitch is equal to 190 u, and channel height – 240 u. Sheet beam is focused by magnetic field 0.9 Tl. At interaction region length 24.6 mm and input power 1 W output power achieves 30 W in frequency band 5 GHz. Fabrication of SWS is based on new developed technologies of diamond trearment: thermochemical polishing (based on intensive solid phase diffusion of carbon in metal at contact of diamond with iron wafer at temperatures below eutectics); precise laser cutting; removing of graphite arising at high temperatures (above 1000°C) during laser cutting and thermochemical polishing; highly adhesive metallization using preliminary silicon ions implantation for subsequent galvanic deposition and brazing. Practical results of SWS fabrication are presented.

Pages: 73-81
References
  1. Srivastava V. THz vacuum microelectonic devices. J. Physics: Conf. Series. 2008. V. 114. 012015.
  2. Booske J.H., Dobbs R.J., Joye C.D. et al. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 2011.
    1. 1. № 1. P. 54−75.
  3. Shin Y.-M., Baig A., Barnett L.R., Tsai W.-C. et al. Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit. IEEE Trans. Electron Devices. 2011. V. 58. № 9. P. 3213−3219.
  4. Shin Y.-M., Baig A., Barnett L.R., Tsai W.-C., Luhmann N.C. System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier. IEEE Trans. Electron Devices. 2012. V. 59. № 1. P. 234−240.
  5. Rozhnev A.G., Ryskin N.M., Karetnikova T.A. i dr. Issledovanie kharakteristik zamedlyayushchei sistemy lampy begushchei volny millimetrovogo diapazona s lentochnym elektronnym puchkom. Izvestiya VUZov. Radiofizika. 2013. T. 56. № 8−9. S. 601−613.
  6. Goldenberg B.G. Basic principles of LIGA-technology. URL = www.ssrc.inp.nsk.su/CKP/lections/Theory_of_LIGA-tecnology.pdf.
  7. Thevenoud J.M., Mercier B., Bourouina T., Marty F., Puech M., Launay N. DRIE technology: from micro to nanoapplications. 2017. URL = https://www.researchgate.net/publication/228781147_DRIE_TECHNOLOGY_FROM_MICRO_TO_NANOAPPLICATIONS.
  8. Joye C.D., Cook A.M., Calame J.P. et al. Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA. IEEE Trans. on Electron Devices. 2014. V. 61. № 6. P. 1672−1678.
  9. Jinjun Feng, Jun Cai, Yinfu Hu et al. Development of W-band Folded Waveguide Pulsed TWTs. IEEE Trans. on Electron Devices. 2014.
    1. 61. № 6. P. 1721−1725.
  10. Huarong Gong, Yubin Gong, Tao Tang et al. Experimental Investigation of a High-Power Ka-Band Folded Waveguide Traveling-Wave Tube. IEEE Trans. on Electron Devices. 2011. V. 58. № 7. P. 2159−2163.
  11. Galdetskiy A.V., Rakova E.A. Millimeter range planar slow-wave structure – designing and investigation of manufacturing technology. 26-th International conference «& Telecommunication Technology» (CriMiCo-2016). 2016. P. 339−347.
  12. Pat. RF № 2357001. Prioritet 25.08.2007. Sposob polucheniya izdelii iz polikristallicheskogo plastin almaza. Dukhnovskii M.P., Ratnikova A.K., Fedorov Yu.Yu.i dr. (in Russian)
  13. Pat. RF № 2579398. Prioritet ot 17.03.2015. Sposob obrabotki poverkhnosti almaza. Dukhnovskii M.P., Smirnova A.K., Fedorov Yu.Yu. i dr. (in Russian)
  14. Pat. RF № 2593641. Prioritet ot 03.06.2015. Sposob obrabotki poverkhnosti almaza. Dukhnovskii M.P., Smirnova A.K., Fedorov Yu.Yu. i dr. (in Russian)
  15. Pat. RF № 2285977. Prioritet ot 21.03.2005. Metallizirovannaya plastina almaza i sposob ee izgotovleniya. Dukhnovskii M.P., Krysov G.A., Ratnikova A.K. (in Russian)
  16. Pat. RF № 2436189. Prioritet ot 25.06.2010. Metallizirovannaya plastina almaza dlya izdelii elektronnoi tekhniki. Dukhnovskii M.P., Ratnikova A.K., Fedorov Yu.Yu. (in Russian)
  17. Dukhnovskii M.P., Krysov G.A., Ratnikova A.K. Metallizatsiya plastin iz iskusstvennogo CVD-almaza. Elektronnaya tekhnika. Seriya 1. SVCh-tekhnika. 2008. № 1(494). S. 3−7. (in Russian)
Date of receipt: 26 июня 2019 г