350 rub
Journal Radioengineering №7 for 2019 г.
Article in number:
Measurement of dielectric parameters using microwave coaxial Bragg structure
Type of article: scientific article
DOI: 10.18127/j00338486-201907(10)-02
UDC: 621.372.2
Authors:

 D.A. Usanov  – Honored Scientist of RF, Dr.Sc.(Phys.-Math.), Professor, Head of Department of Solid State Physics,

Saratov State University named after N.G. Chernyshevsky

S.A. Nikitov – Corresponding Member of RAS, Director of Kotel'nikov IRE of RAS (Moscow) E-mail: nikitov@cplire.ru

A.V. Skripal – Dr.Sc.(Phys.-Math.), Professor, 

Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky

D.V. Ponomarev – Ph.D.(Phys.-Math.), Associate Professor, 

Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky E-mail: ponomarev87@mail.ru

O.M. Ruzanov – Post-graduate Student, 

Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky E-mail: zodiark@list.ru

I.O. Timofeev – Post-graduate Student, 

Department of Solid State Physics, Saratov State University named after N.G. Chernyshevsky E-mail: i.o.timofeew@yandex.ru

Abstract:

In the present work the microwave coaxial Bragg structure, using as a sensor that ensures the implementation of a technique for measuring the dielectric constant and dielectric loss tangent of materials and structures, have been presented in the form of dismountable coaxial transmission line section, with a coaxial photonic crystal (CPC) inside it formed as a dielectric filling with periodically varying dielectric constant. In this case, the measured sample played the role of the periodicity defect in the Bragg structure, which led to the appearance of a defect mode in the band gap at its amplitude-frequency characteristic. One-dimensional CPCs, composed of 11 layers, have been considered in the frequency range 7…12 GHz. Odd layers of CPC were segments with Teflon filling (ε = 2,1), even – segments with air filling (ε = 1). The length of odd and even segments was 8 mm and 22,56 mm, respectively. The inner diameter of the outer conductor was 7 mm, the outer diameter of the inner conductor was 3 mm. To calculate the transmission and reflection coefficients of an electromagnetic wave in a CPC, a transfer matrix of a complex quadrupole, which is a cascade connection of elementary quadrupoles with known transmission matrices, was used. The measuring section containing the investigated CPC was connected to the Agilent PNA-X N5242A Network Analyzer using a 50-ohm coaxial transmission line. On the basis of solving the inverse problem by the least squares method using measured frequency dependences of the transmittance and reflection at the frequency of the defect mode in the CPC band gap, the dielectric constant and tangent of the dielectric loss tangent of samples made of Teflon, caprolon, ebonite and laminate have been determined. The relative error in determining the relative dielectric constant and the dielectric loss tangent at the resonant frequency of the defect mode was less than 1% and 20%, respectively.

Pages: 6-12
References
  1. Usanov D.A., Nikitov S.A., Skripal A.V., Ponomarev D.V. Odnomernye SVCh fotonnye kristally. Novye oblasti primeneniya. M.: FIZMATLIT. 2018. (in Russian)
  2. Belyaev B.A., Khodenkov S.A., Shabanov V.F. Issledovanie chastotno-selektivnykh ustroistv, postroennykh na osnove mikropoloskovogo dvumernogo fotonnogo kristalla. Doklady Akademii nauk. 2016. T. 467. № 4. S. 400−404. (in Russian)
  3. Gomez A., Vegas A., Solano M.A., Lakhtakia A. On One- and Two-Dimensional Electromagnetic Band Gap Structures in Rectangular Waveguides at Microwave Frequencies. Electromagnetics. 2005. V. 25. № 5. P. 437−460.
  4. Mukhortov V.M., Masychev S.I., Mamatov A.A., Mukhortov Vas.M. Elektricheski perestraivaemyi fotonnyi kristall na osnove koplanarnogo volnovoda s nanorazmernoi segnetoelektricheskoi plenkoi. Pisma v ZhTF. 2013. T. 39. № 20. S. 70−76. (in Russian)
  5. Usanov D.A., Skripal A.V., Abramov A.V., Bogolyubov A.S., Kulikov M.Yu., Ponomarev D.V. Mikropoloskovye fotonnye kristally i ikh ispolzovanie dlya izmereniya parametrov zhidkostei. Zhurnal tekhnicheskoi fiziki. 2010. T. 80. № 8. S. 143−148. (in Russian)
  6. Nikitin Al.A., Nikitin An.A., Ustinov A.B., Lahderanta E., Kalinikos B.A. Sverkhvysokochastotnyi fotonnyi kristall na shchelevoi linii peredachi s segnetoelektricheskoi plenkoi. Zhurnal tekhnicheskoi fiziki. 2016. T. 86. № 6. S. 115−120. (in Russian)
  7. Usanov D.A., Nikitov S.A., Skripal A.V., Ryazanov D.S. Breggovskie sverkhvysokochastotnye struktury na volnovodno-shchelevykh liniyakh. Radiotekhnika i elektronika. 2016. T. 61. № 4. S. 321−326. (in Russian)
  8. Usanov D.A., Nikitov S.A., Skripal A.V., Merdanov M.K., Evteev S.G. Volnovodnye fotonnye kristally na rezonansnykh diafragmakh s upravlyaemymi n-i-p-i-n-diodami kharakteristikami. Radiotekhnika i elektronika. 2018. T. 63. № 1. S. 65−71. (in Russian)
  9. Usanov D.A., Nikitov S.A., Skripal A.V., Merdanov M.K., Evteev S.G., Ponomarev D.V. Volnovodnye filtry zagrazhdeniya na osnove svekhvysokochastotnykh fotonnykh kristallov s kharakteristikami, upravlyaemymi n-i-p-i-n-diodami. Radiotekhnika i elektronika. 2019. T. 64. № 4. S. 375−386. (in Russian)
  10. Nikitov S.A., Gulyaev Yu.V., Usanov D.A., Skripal A.V., Ponomarev D.V. Opredelenie provodimosti i tolshchiny poluprovodnikovykh plastin i nanometrovykh sloev s ispolzovaniem odnomernykh SVCh fotonnykh kristallov. Doklady Akademii Nauk. Yanvar 2013. T. 448. № 1. S. 35−37. (in Russian)
  11. Usanov D.A., Nikitov S.A., Skripal A.V., Ponomarev D.V., Latysheva E.V. Mnogoparametrovye izmereniya epitaksialnykh poluprovodnikovykh struktur s ispolzovaniem odnomernykh sverkhvysokochastotnykh fotonnykh kristallov. Radiotekhnika i elektronika. 2016. T. 61. № 1. S. 45−53. (in Russian)
  12. Sazonov D.M. Antenny i ustroistva SVCh: Uchebnik dlya radiotekhnicheskikh spetsialnostei vuzov. M.: Vysshaya shkola. 1988.
  13. Feldshtein A.L., Yavich L.R., Smirnov V.P. Spravochnik po elementam volnovodnoi tekhniki. Izd. 2-e, pererab. i dop. M: Sov. radio. 1967. (in Russian)
Date of receipt: 26 июня 2019 г.