350 rub
Journal Radioengineering №7 for 2019 г.
Article in number:
Circuit of formation of the control signal of the holographic system ARG
Type of article: scientific article
DOI: 10.18127/j00338486-201907(9)-24
UDC: 778.3; 621.37
Authors:

D.D. Gabrielyan – Honored Scientist of RF, Dr.Sc.(Eng.), Professor, 

Deputy Head on Science of Scientific and Thechnical Complex, FSUE «RNIIRS» FRPC

V.I. Demchenko – Ph.D.(Eng.), Head of Scientific and Thechnical Complex, 

FSUE «RNIIRS» FRPC

S.V. Karavaev – Head of Laboratory, 

FSUE «RNIIRS» FRPC

N.A. Mihaylov – Ph.D.(Eng.), Head of Sector, 

FSUE «RNIIRS» FRPC

A.G. Prygunov – Ph.D.(Eng.), Associate Professor, Senior Research Scientist, 

FSUE «RNIIRS» FRPC

Abstract:

The problems of construction of the circuit of formation of the control signal of the holographic system of automatic gain control of the radio signal, implementing a method with reverse gain control is concerned. The principle of operation of the circuit of formation of the control signal of the holographic AGC system is to form an interferogram in the plane of photodetectors. The intensity distribution of the optical field in interferogramis determined by the amplitude of the received radio signal. Changing the amplitude of the input signal leads to a change in the distribution of the intensity of the optical field in the plane of the interferogram. This changing is fixed with a line of photodetectors, on the basis of which signals in the decider the control law of the AGC is formed. The absence of active microwave elements in the path of the control signal of the holographic AGC system provides an expansion of the dynamic range and operating frequency band.

The design elements of the control circuit don’t limit the dynamic range of its operation and the speed of the holographic AGC system. These parameters are determined by the high-speed performance of the photodetectors and the device that processes signals from the outputs of these photodetectors and produces control signals to the amplifying elements of the adjustable amplifying stages. Piezoelectric element used in the scheme of the holographic AGC system has a limited band of operating frequencies and performs the function of a filter of background noise, the frequencies of which lie outside this band.

A mathematical model describing the relationship between the amplitude of the received radio signal and the parameters of the interferogram is presented. Using the developed model, numerical studies have been carried out to show the possibility of expanding the dynamic range of the radio signal AGC system, increasing its speed and reducing the effect of background noise on the operation of the AGC system, as well as to form requirements for the elements of the path, in particular, to photodetectors, using which the current interferogram is recorded.

Pages: 215-285
References
  1. Kulikov G.V., Paramonov A.A. Radioveshchatelnye priemniki: Ucheb. posobie dlya vuzov. M.: Goryachaya liniya-Telekom. 2011. 120 s. (in Russian)
  2. Ipatov V.P. i dr. Sistemy mobilnoi svyazi: Ucheb. posobie dlya vuzov. M.: Goryachaya liniya-Telekom. 2003. 272 s. (in Russian)
  3. Tartakovskii G.P. Dinamika sistem avtomaticheskoi regulirovki usileniya. M.-L.: Gosenergoizdat. 1957. 191 s. (in Russian)
  4. Buga N.N., Falko A.I., Chistyakov N.I. Radiopriemnye ustroistva: Ucheb. dlya vuzov po spets. «Radiosvyaz i radioveshchanie». Pod obshch. red. N.I. Chistyakova. M.: Radio i svyaz. 1986. 319 s. (in Russian)
  5. Bogdanovich B.M. Okulich N.I. Radiopriemnye ustroistva: Ucheb. posobie dlya vuzov. Pod obshch. red. B.M. Bogdanovicha. M.: Vysshaya shkola. 1991. 428 s. (in Russian)
  6. Konovalov G.F. Radioavtomatika: Uchebnik dlya vuzov po spets. «Radiotekhnika». M.: Vysshaya shkola. 1990. 335 s. (in Russian)
  7. Pat. № 2597664 S2, RF. Golograficheskii sposob regulirovki usileniya signala. Prygunov A.G., Sinyutin S.A., Prygunov A.A., Sinyutin E.S.; Opubl. 20.09.2016. Byul. № 26. (in Russian)
  8. Prygunov A.G., Sizov V.P., Bezuglov D.A. Metod opredeleniya peremeshchenii ob'ektov na osnove analiza volnovykh frontov opticheskogo polya s ispolzovaniem etalonnykh gologramm. Optika atmosfery i okeana. 1995. № 8. № 6. S. 826−830. (in Russian)
  9. Bezuglov D.A., Prygunov A.G., Trepachev V.V. Analiz difraktsii v zadache izmereniya peremeshchenii ob'ektov prostranstvennospektralnym metodom. Avtometriya. 1998. № 5. S. 27−37. (in Russian)
  10. Pat. № 2169348 S1, RF. Izmeritel peremeshchenii s ob'emnoi gologrammoi. Parinov I.A., Prygunov A.G., Rozhkov E.V., Trepachev V.V., Popov A.V.; Zayavl. 28.09.1999. Opubl. 20.06.2001. Byul. № 17. (in Russian)
  11. Popov A.V., Prygunov A.G. Primenenie golograficheskogo interferometra dlya registratsii malikh peremeshchenii poverkhnosti tverdykh tel// Izvestiya vuzov. Priborostroenie (SPb.: Gos. institut tochnoi mekhaniki i optiki). 2001. T. 44. № 2. S. 50−55. (in Russian)
  12. Sharapov V.M. Pezoelektricheskie datchiki. M.: Tekhnosfera. 2006. 632 s. (in Russian)
  13. Vysokoeffektivnye pezokeramicheskie materialy. Spravochnik. Rostov-na-Donu: RGU. 1994. 20 s. (in Russian)
  14. Maglitskii B.N. Effektivnost metodov modulyatsii v tsifrovykh sistemakh radiosvyazi: Novosibirsk: Sib. GUTI. 2011. 209 s. (in Russian)
  15. Akimov P.S., Evstratov F.F., Zakharov S.I. Obnaruzhenie radiosignalov. Pod red. A.A. Kolosova. M: Radio i svyaz. 1989. 288 s. (in Russian) 16. Matveev A.N.Osnovy optiki. M.: Mir. 1989. 685 s. (in Russian)
Date of receipt: 16 мая 2019 г.