А.А. Strotsev – Dr.Sc.(Eng.), Associate Professor, Deputy Head on Science of Scientific and Technical Department, FSUE «RNIIRS» FRPC
S.S. Kolesnikov – Part-programming Engineer of the 2nd category,
FSUE «RNIIRS» FRPC
V.V. Stashenko – Ph.D.(Phys.-Math.), Research Scientist, FSUE «RNIIRS» FRPC
This article is devoted to estimation of probability of pointing reflector antenna at the signal source using Global Navigation Satellite System (GNSS) equipment. To carry out this estimation mathematical model was developed connecting spatial coordinates of antennas of GNSS equipment attached to mirror reflector with angular coordinate of point the reflector antenna is pointed to. Developed mathematical model includes step by step coordinate conversions for all units reflector antenna consists of. It takes into account width of antenna diagram and uncertainty of signal source position. Due to complexity of model’s conversions and thus derivation of analytical expressions for estimation of pointing probability of antenna the simulation was carried out using the model. Random values of spatial coordinates of antennas of GNSS equipment amenable to normal distribution are used as input for the model. Large numbers of iterations of calibration of reflecting antenna at random initial position and further pointing at the signal source are simulated for. Estimation of probability of success pointing was carried out for the condition of appearance of signal source within antenna diagram at the level above −3 dB. For the rest of outcomes of pointing antenna to the signal source which are unsuccessful minimal azimuth and elevation angles for scanning are estimated. Simulations are carried out for reflector antennas with mirrors diameters of 1.5, 3.5 and 12 m and for operating frequency bands L, S, C, X, Ku и K. Developed model may be used for designing of devices for adjusting and calibration of reflector antennas using GNSS equipment.
- Pat. № 2667337, MPK G01R 29/10, G01S 7/40, RF. Sposob yustirovki zerkalnoi antenny po signalam kosmicheskikh radioizluchayushchikh ob'ektov. Demchenko V.I., Gabrielyan D.D., Vorobev N.Yu., Saranov A.A.; zayavitel i patentoobladatel FGUP «RNIIRS». Zayavka № 2017130103 ot 28.04.2017. Opubl. 18.09.2018. Byul. № 26. (in Russian)
- Metody izmereniya kharakteristik antenn SVCh. Pod red. N.M. Tseitlina. M.: Radio i svyaz. 1985. 368 s. (in Russian)
- Pat. № 2167473, MPK H01Q15/14, RF. Sposob yustirovki opornogo ustroistva otrazhatelnogo shchita zerkalnoi antenny. Sayapin S.N., Sinev A.V.; zayavitel i patentoobladatel: In-t mashinovedeniya im. A.A. Blagonravova RAN. Zayavka № 2017130103 ot 09.12.1999. Opubl. 20.05.2001. (in Russian)
- Kolesnikov S.S., Kuzin D.A., Strotsev A.A., Tsoi I.V. Uluchshenie kharakteristik mnogoluchevykh tsifrovykh antennykh reshetok, ekspluatiruemykh na avtomobilnykh nositelyakh. Sb. dokladov 4-i Mezhdunar. nauch.-tekhn. konf. « Radiotekhnika, elektronika i svyaz». Omsk: AO «ONIIP». 2017. S. 223−229. (in Russian)
- Kolesnikov S.S., Strotsev A.A. Geodezicheskoe obespechenie funktsionirovaniya radioinformatsionnykh sistem. Materialy 30-i Voennonauch. konf. Sektsii 3, 4. Kursk: NITs FGUP «18 TsNII» MO RF. 2016. S. 69−70. (in Russian)
- Fateev Yu. Opredelenie uglovoi orientatsii ob'ektov na osnove globalnykh navigatsionnykh sputnikovykh sistem. Radiotekhnika. 2002. № 7. S. 51−56. (in Russian)
- Kolesnikov S.S., Strotsev A.A. Metodika obrabotki signalov GNSS dlya opredeleniya uglovogo polozheniya razryazhennoi reshetki navigatsionnoi apparatury potrebitelya. Sb. trudov 11-i Vseros. konf. «Radiotekhnika i radiosvyaz». M.: IRE im. V.A. Kotelnikova RAN. 2017. S. 166−169. (in Russian)
- Bova N.T., Reznikov G.B. Antenny i ustroistva SVCh. K.: Vyssh. shk. 1982. 251 s. (in Russian)
- Stepanov O., Koshaev D. Issledovanie metodov resheniya zadachi orientatsii s ispolzovaniem sputnikovykh sistem. Giroskopiya i navigatsiya. 1999. T. 2. S. 30−55. (in Russian)
- Tikhonov V.I. Statisticheskaya radiotekhnika. M.: Sov. radio. 1966. 624 s. (in Russian)
- Jerome R. Vetter. Fifty years of orbit determination: development of modern astrodynamics methods. Jonhs Hopkins APL Technical Digest. 2007. V. 27. № 3. P. 239.