350 rub
Journal Radioengineering №6 for 2019 г.
Article in number:
Dependence of root-mean-square errors of bearing direction finding on the signal frequency and the direction of arrival with placement of the four-element antenna array on the unmanned vehicle
Type of article: scientific article
DOI: 10.18127/j00338486-201906(8)
UDC: 621.396.663
Authors:

S.A. Antipov – Dr.Sc.(Phys.-Math.), Professor, 

Department «General Physics of Radio-Electronic Profile», Voronezh State Technical University

K.A. Razinkin – Dr.Sc.(Eng.), Professor, 

Department «Information Security Systems», Voronezh State Technical University E-mail: kostyr@mail.ru

A.S. Samodurov – Ph.D.(Eng.), Associate Professor, 

Department Radio Equipment Engineering and Manufacturing, Voronezh State Technical University E-mail: unaxel2000@mail.ru

Abstract:

The main problem arising in the development of mobile-based antenna arrays is the problem of taking into account the influence of the carrier body on the characteristics of such an antenna array. When analyzing this kind of model, it is appropriate to use a homogeneous theory of diffraction. The results of the calculation of the RMS values dependence on the frequency, averaged over all the analyzed angles of the radio wave direction of arrival, are presented. The dependences of the RMS value on the azimuth angle of the radio wave direction of arrival for the cases of the antenna array placement on the carrier body and in the free space averaged for all the analyzed signal frequencies are calculated. An interesting effect is that, in the frequency range 100…700 MHz, the antenna array placed on a carrier has a much smaller root-mean-square error than the same array, but located in free space.

As for the dependence of root-mean-square errors of bearing direction finding on the signal frequency applicable without any additional adjustments of working frequency range of the antenna array on the carrier support, it can be noted that the error does not exceed 1° in the frequency range of approximately 100…950 MHz, which is significantly less than the RMS for an antenna array located in free space. Higher frequencies, for example, around 1400…1450 MHz, are not generally applicable for direct operation because in such cases the RMS practically reaches 10° what can be explained by the resonance phenomena of the antenna array / carrier support system. Based on the results of the dependence of the RMS error of bearing direction finding on the azimuth of the signal direction of arrival analysis, it can be stated that in the case of placing a four-element antenna array on the carrier support, the errors are significantly less even for averaging over the whole range of frequencies analyzed. The antenna array usage together with the carrier support allows applying a narrower range of operating frequencies – 50…1300 MHz, the RMS within which does not exceed 2°, or even 50…1000 MHz, the RMS within which does not exceed 1°, unless, of course, such a range meets other system requirements.

Pages: 117-121
References
  1. Ilin E.M., Polubekhin A.I., Cherevko A.G. Konformnye antennye sistemy – perspektivnoe napravlenie razvitiya bortovykh RLK dlya bespilotnykh letatelnykh apparatov. Vestnik SibGUTI. 2015. № 2 (30). S. 149−155.
  2. Bobylkin I.S., Muratov A.V., Nosova L.A., Samodurov A.S. Razrabotka pelengatsionnoi antennoi reshetki raspolozhennoi na bortu bespilotnogo letatelnogo apparata. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2015. T. 11. № 6. S. 133−135.
  3. Lee Jung-Hoon, Lee Jong-Hwan, Woo Jong-Myung Method for obtaining three- and four-element array spacing for interferometer direction-finding system. IEEE antennas and wireless propagation letters. 2016. T. 15. S. 897−900.
  4. Jackson B.R., Rajan S., Liao B.J., i dr. Direction of arrival estimation using directive antennas in uniform circular arrays. IEEE transactions on antennas and propagation. 2015. T. 63. № 2. S. 736−747.
  5. Muratov A.V., Nikolaev V.I., Nosova L.A., Samodurov A.S. Chislennyi analiz pelengatsionnykh kharakteristik koltsevoi vibratornoi antennoi reshetki, ustanovlennoi na bortu vertoleta. Teoriya i tekhnika radiosvyazi (Voronezh: «Kontsern «Sozvezdie»). 2015. № 4. S. 30−35.
  6. Samodurov A.S., Merkulova N.V., Kostrova V.N. Vliyanie absolyutnykh pogreshnostei pelengovaniya na chastotu signala pri razmeshchenii chetyrekhelementnoi antennoi reshetki na bespilotnom nositele. Radiotekhnika. 2018. № 6. S. 16−19.
  7. Antipov S.A., Samodurov A.S. Modelirovanie pelengatsionnykh kharakteristik trekhelementnoi koltsevoi antennoi reshetki s uchetom vliyaniya nositelya. Radiotekhnika. 2017. № 6. S. 145−148.
  8. Gazzah H., Delmas J.P., Jesus S.M. Direction-finding arrays of directional sensors for randomly located sources. IEEE transactions on aerospace and electronic systems. 2016. T. 52. № 4. S. 1995−2003.
  9. Li Wenxing, Mao Xiaojun, Yu Wenhua i dr. An effective technique for enhancing direction finding performance of virtual arrays. International journal of antennas and propagation. 2014. Nomer stati 728463.
  10. Pirogov A.A., Bocharov E.A., Semka E.V., Makarov O.Yu. Metodika proektirovaniya sintezatora chastot pryamogo tsifrovogo sinteza na baze PLIS. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. T. 14. № 6. S. 108−116.
Date of receipt: 6 мая 2019 г.