A.Yu. Parshin – Ph.D.(Eng.), Associate Professor, Department «Radio Engineering Devices», Ryazan State Radio Engineering University
E-mail: parshin.a.y@rsreu.ru
Yu.N. Parshin – Dr.Sc.(Eng.), Professor, Head of Department «Radio Engineering Devices», Ryazan State Radio Engineering University
E-mail: parshin.y.n@rsreu.ru
The article discusses the methods of signal processing in information transfer systems with ultra narrowband signals in relation to the tasks of implementing the systems of the Internet of Things (IoT) devices. The usage of ultra-narrowband signals is possible under the condition of a low transmission rate in the communication channel. In addition, this reduces the energy requirements for receiving and processing such signals. However, the usage of a small width of the signal spectrum leads to the problem of a high level of noise in the low frequency region.
Along with thermal noise, flicker noise has a noticeable effect. Their main feature is the type of power spectral density - inversely proportional to frequency. As a result, at low frequencies, the flicker noise power will be great compared to other types of noise. The fractional nature of the power spectral density makes it possible to use models of random processes with fractional dimensions to describe the properties of flicker noise. Thus, it becomes possible to estimate the parameters of such noise and their subsequent compensation. There are known and developed statistical methods for developing models of flicker noise, for example, the model of fractal Brownian motion with a fractional dimension, the measure of fractality of which is the Hurst exponent. Non-Gaussian models of fractal noise and interference are also being developed.
The article is devoted to the development of an optimal signal detection algorithm against the background of the sum of flicker noise and thermal noise. Linear filtering is performed for a Gaussian flicker noise model. For a non-Gaussian flicker noise, an algorithm is proposed based on the estimated-correlation-correlation approach. A model of a non-Gaussian process based on differential equations is considered. Equations are obtained for filter estimates of signal realizations. The noise immunity of the optimal signal processing against the background of fractal Brownian motion and thermal noise is analyzed for different values of the signal-noise ratio and the Hurst exponents of the noise models.
- Mangalvedhe N., Ratasuk R., Ghosh A. NB-IoT Deployment Study for Low Power Wide Area Cellular IoT. IEEE 27th Annual International Symposium on Personal, Indoor and Mobile Radio Communication. 2016.
- Kroell H., Korb M., Weber B., Willi S., Huang Q. Maximum-Liklihood Detection for Energy-Efficient Timing Acquisition in NB-IoT. IEEE Wireless Communications and Networking Conference Workshops. 2017.
- Beyene Y., Jaentti R., Ruttik K., Iraji S. On the Performance of Narrow-Band Internet of Things. IEEE Wireless Communications and Networking Conference. 2017.
- Potapov A.A Fraktaly v radiofizike i radiolokatsii: topologiya vyborki M.: Universitetskaya kniga. 2005. 848 s.
- Culter C.D. A review of the theory and estimation of fractal dimension. Nonlinear time series and chaos. V. 1. Dimension estimation and models. 1993. S. 1−107.
- Sosulin Yu.G. Teoriya obnaruzheniya i otsenivaniya stokhasticheskikh signalov M.: Sov. radio. 1978. 320 s.
- Sosulin Yu.G., Parshin Yu.N. Otsenochno-korrelyatsionno-kompensatsionnaya obrabotka mnogomernykh signalov. Radiotekhnika i elektronika. 1981. № 26. S. 1635−1643.
- Sosulin Yu.G., Kostrov V.V, Parshin Yu.N. Otsenochno-korrelyatsionnaya obrabotka signalov i kompensatsiya pomekh M.: Radiotekhnika. 2014. 632 s.
- Crownover R.M. Introduction to Fractals and Chaos. Jones and Bartlett. 1995.
- Pisarenko D.V., Pisarenko V.F. Statistical estimation of the correlation dimension. Physics Letters. 1995. A(197). S. 31−39.
- De Luca L., Lasocki S., Luzio D., Vitale M. Fractal dimension confidence interval estimation of epicentral distribution. Annali di Geofisica. 1999. V. 42(5). S. 911−925.
- Parshin A.Yu., Parshin Yu.N. Usage of non-Gaussian statistics for RF signals detection by complex energy and fractal detector. Proc. IRS-2013. Drezden (Germany). 2013. S. 779−784.
- Parshin Yu.N., Parshin A.Yu. Maksimalno pravdopodobnoe otsenivanie korrelyatsionnoi razmernosti s uchetom vliyaniya smeshcheniya otsenki i usecheniya diapazona masshtabov. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2013. № 4. S. 18−25.
- Parshin A.Yu., Parshin Yu.N. Vydelenie granits fraktalnogo obieekta metodom maksimalnogo pravdopodobiya po nezavisimoi i zavisimoi vyborkam. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2014. № 4. S. 3−9.
- Kaukalys B., Ruseckas J. Stochastic nonlinear differential equation generating 1/f noise. Physical Review E 70, 020101(R). 2004.
- Kasdin N.J. Discrete Simulation of Colored Noise and Stochastic Processes and 1/fα Power Law Noise Generation. Proceeding of the IEEE. 1995. V. 83. № 5.
- Kaukalys B., Alaburda M., Ruseckas J. Modeling non-Gaussian 1/f noise by the stochastic differential equations. 19th International Conference on Noise and Fluctuations (ICNF 2007). AIP Conf. Proc. 922. 2007. S. 439−442.
- Milotti E. 1/f noise: a pedagogical review. Dipartimento di Fisica, Università di Udine and I.N.F.N. – Sezione di Trieste Via delle Scienze, 208 – I-33100 Udine. Italy. 2002.
- Bochkov G.N., Kuzovlev Yu.E. Novoe v issledovaniyakh 1/f shuma. Uspekhi fizicheskikh nauk. 1983. T. 141. № 1. S. 151−176.
- Gots S.S., Galyamov R.R., Bakhtizin R.Z. Issledovanie prirody nizkochastotnykh fluktuatsii toka polevoi emissii metodom dvumernoi funktsii raspredeleniya. Pisma v ZhETF. 1998. № 21. S. 87−93.