350 rub
Journal Radioengineering №5 for 2019 г.
Article in number:
Calculation, design and manufacturing of electric equivalents of the powerful low-frequency hydroacoustic transducers
Type of article: scientific article
DOI: 10.18127/j00338486-201905(II)-13
Authors:

A.K. Britenkov – Ph.D.(Phys.-Math.), Research Scientist, Institute of Applied Physics of RAS (N. Novgorod);  Associate Professor, Department of Radio Engineering, Lobachevsky State University of Nizhni Novgorod E-mail: britenkov@ipfran.ru

B.N. Bogolyubov – Ph.D.(Eng.), Head of Laboratory of Applied Hydroacoustics, 

Institute of Applied Physics of RAS (N. Novgorod)

E-mail: boris@ipfran.ru

V.A. Farfel – Research Scientist, 

Institute of Applied Physics of RAS (N. Novgorod)

E-mail: vicfar@ipfran.ru

S.Yu. Smirnov – Leading Engineer, Laboratory for Hydroacoustics Facilities Design, 

Institute of Applied Physics of RAS (N. Novgorod)

E-mail: s.smirnov@appl.sci-nnov.ru

N.Yu. Kruglov – General Director of 

LLC «STC «North-West Laboratory» (Saint-Petersburg)

E-mail: n.kruglov@ferrite.ru

D.N. Kushnerev – Technical Director of 

LLC «STC «North-West Laboratory» (Saint-Petersburg) E-mail: d.kushnerev@ferrite.ru

 

Abstract:

One of the actual problems in hydroacoustics is creating of powerful low-frequency radiating complexes emitting hundreds of thousands of Pa×m in the frequency range 20−1000 Hz. Hydroacoustic transducers of such complexes are usually huge (up to 3 m), have big weight (up to 5 tons) and are very expensive. Effective operation of radiation complex requires matching the excitation system with the transducer. Using electrical equivalents of radiators reduces cost and development term of the matching devices, but imposes specific demands to calculation and manufacturing of the powerful radiators equivalents due to high radiation level. In particular, high value of inductance of the transducer electric equivalent and high level of effective voltage complicate ensuring breakdown strength and matching to calculated characteristics. The provided calculations and development algorithm allow to simplify manufacturing of the radiator equivalent and to reduce its cost, while the transducer equivalent circuit parameters remain unchanged.

The World Ocean exploration is associated with using of autonomous underwater uninhabited vehicles (AUV) with long-range operation area. Creation of stable communication channels and commands transmission over long distance in remote control systems require operation in low-frequency acoustic bands (from hundreds of Hz to 1 kHz). Besides the AUV remote control, the low-frequency bands are used for fishing and seismic exploration, underwater lighting and operation of autonomous acoustic buoys. IAP RAS has made numerous successful experiments on radiation and reception of hydroacoustic signals at distances up to 600 km in such lowfrequency bands.

Acoustic signals with high radiation level are usually applied in such low-frequency bands. High radiation level of low-frequency transducers, autonomy of hydroacoustic systems, matching of the excitation system and the transducer are the main features of optimal operation of radiating complex. Therefore, developтеnt of electrical equivalents of hydroacoustic transducers is an important task of hydroacoustic radiating systems manufacturing and tuning.

Piezoelectric transducers as low-frequency radiator active elements and mechanical transformers help to find a balance in the dependence of the transducer dimensions on its efficiency, frequency band, acoustic power for depths of about 500 m and more. Radiation of high-intensity acoustic field by piezoelectric transducers requires large values of the excitation system voltage. That creates specific requirements on calculation and manufacturing of electrical equivalents of high-power hydroacoustic transducers. Made on traditional replacement scheme, such equivalents are subjected to huge voltage overloads (up to 15 kV for small-sized transducers in the range about 500 Hz with radiation level up to 200 dB). It is difficult both technically and technologically to ensure high electrical strength of the coil, which has to be twice as big as the operating voltage (above 35 kV). The suggested equivalent circuit of hydroacoustic radiator with decreasing transformer has equivalent parameters almost identical to the obtained from the radiator field tests. The manufacturing technology of radiator electric equivalent is simplified essentially and it becomes affordable. In addition an algorithm of the equivalent calculating and manufacturing is provided, which takes into account variation of the manufactured and purchased products parameters.

Systematic approach in selection of the optimal technical solution in combination with replacement scheme search algorithms allows to obtain high stability of the parameters of low-frequency radiator equivalents, and ensures the specified technical conditions are fulfilled. The equivalent manufacturing process is optimized on criteria of identity of the product parameters to calculated ones, minimizing of the purchased components quantity, and decreasing of completion and tuning operations quantity simultaneously.

Pages: 129-136
References
  1. Spravochnik po tekhnicheskoi akustike. Pod red. M. Khekla i Kh.A. Myullera. L.: Sudostroenie. 1980. 440 s.
  2. Koryakin Yu.A., Smirnov S.A., Yakovlev G.V. Korabelnaya gidroakusticheskaya tekhnika. Sostoyanie i aktualnye problemy. SPb: Nauka. 2004. 410 s.
  3. Moscaa F., Matte G., Shimura T. Low-frequency source for very long-range underwater communication. J. Acoust. Soc. Am. 2013. V. 133(1). P. EL61–EL67.
  4. Quer R., Dasseux Ch. Increasing depth capability of «Diabolo» flextensional transducer for active linear arrays. Proc. of the Institute of Acoustics. 1999. V. 21. P. 117−125.
  5. Lin S., Xu J. Effect of the matching circuit on the electromechanical characteristics of sandwiched piezoelectric transducers. Sensors. 2017. V. 17(2). P. 329.
  6. Yasin M., Ali S., Usmani S.H., Khan M.U. Broad band impedance matching transformer design consideration for high power electroacoustic transducer. J. Electrical Systems. 2018. 14(3). P. 26−35.
  7. Perny M., Vary M., Saly V., Packa J. Impedance spectroscopy as a powerful tool for characterization of devices for electric power engineering. Proceedings of the 8th international scientific symposium on electrical power engineering (Elektroenergetika 2015). Stara Lesna (Slovakia). 2015. P. 292−295.
  8. Furduev V.V. Akusticheskie osnovy veshchaniya. M.: Kniga po trebovaniyu. 2012. 103 s.
  9. Yildiz A.B. Electrical equivalent circuit based modeling and analysis of direct current motors. Int. J. of Electrical Power & Energy Systems. 2012. V. 43(1). № 12. P. 1043−1047.
  10. Rassadin A.E. Ob odnom konstruktivnom algoritme postroeniya antennykh ekvivalentov. Tez. dokl. VNKSF-12. Novosibirsk. 2006.
    1. 648.
  11. Bakunov M.I., Rogozhin I.Yu. Analogovoe modelirovanie effekta rasshchepleniya elektromagnitnogo impulsa. Fizika plazmy. 1997.
    1. 23. № 5. S. 402−407.
  12. Grossi M., Riccò B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sens. Sens. Syst. 2017. V. 6. P. 303−325.
  13. Huang W., Chen D., Baker E.M., Zhou J., Hsieh H., Lee F.C. Design of a Power Piezoelectric Transformer for a PFC Electronic Ballast. IEEE Trans. Ind. Electron. 2007. V. 54(6). P. 3197−3204.
  14. Bogorodskii V.V., Zubarev L.A., Korepin E.A., Yakushev V.I. Podvodnye elektroakusticheskie preobrazovateli. JI.: Sudostroenie. 1983. 248 c.
  15. Andreev M.Ya., Bogolyubov B.N., Klyushin V.V., Rubanov I.L. Nizkochastotnyi malogabaritnyi prodolno-izgibnyi elektroakusticheskii preobrazovatel. Datchiki i sistemy. 2010. № 12. S. 51.
  16. Roes M.G., Duarte J.L., Hendrix M.A., Lomonova E.A. Acoustic Energy Transfer: A Review. IEEE Trans. Ind. Electron. 2013. V. 60. P. 242−248.
  17. Bogolyubov B.N., Kirsanov A.V., Leonov I.I., Smirnov C.A., Farfel V.A. Raschet i eksperimentalnye issledovaniya kompaktnogo prodolno-izgibnogo gidroakusticheskogo preobrazovatelya s tsentralnoi chastotoi izlucheniya 520 Gts. Gidroakustika. 2015. № 23(3). S. 20−26.
  18. Woolet R. Sonar Transducer Fundumentals. Newport – New London: Naval Underwater Systems Center. 1986. 102 r.
  19. Kalantarov P.A., Tseitlin L.A. Raschet induktivnostei: cpravochnaya kniga. L.: Energoatomizdat. 1986. 488 s.
  20. Sverdlin G.M. Gidroakusticheskie preobrazovateli i antenny. JI.: Sudostroenie. 1980. 232 s.
  21. Kotenev S.V., Evseev A.N. Raschet i optimizatsiya toroidalnykh transformatorov i drosselei. M.: Goryachaya liniya – Telekom. 2013. 360 s.
  22. The impedance-matching design and simulation on high power elctro-acoustical transducer. Sensors and Actuators A Physical. 2004. V. 115(1). P. 38−45.
  23. Voinov B.S. Informatsionnye tekhnologii i sistemy. M.: Nauka. 2003. 655 s.
  24. Arutyunov E.A., Borodin O.N., Drobyazko A.A., Chashchin E.A., Shashok P.A. Proektirovanie silovykh transformatorov s ispolzovaniem metodov optimizatsii. Omskii nauchnyi vestnik. Omskii gosudarstvennyi tekhnicheskii universitet. 2017. № 6(156). S. 47−53.
  25. Sapronov A.A., Zibrov V.A., Vorobev S.V. Primenenie pezoelektricheskikh preobrazovatelei v sisteme distantsionnogo monitoringa potreblyaemykh vodnykh resursov v sfere zhilishchno-kommunalnogo khozyaistva. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy. 2010. T. 6. № 1. S. 35−40.
  26. Aleksandrov V.A., Maiorov V.A., Basov V.V. Issledovanie impedansnykh kharakteristik kanalov peredayushchikh traktov na osnove aktivnykh ekvivalentnykh skhem zameshcheniya gidroakusticheskikh preobrazovatelei. Trudy XIV Vseros. konf. «Prikladnye tekhnologii gidroakustiki i gidrofiziki» GA-2018. Sankt Peterburg. 2018. S. 114−116.
  27. Smaryshev M.D., Dobrovolskii Yu.Yu. Gidroakusticheskie antenny. L.: Sudostroenie. 1984. 304 c.
Date of receipt: 10 апреля 2019 г.