350 rub
Journal Radioengineering №12 for 2019 г.
Article in number:
Interference stability of signals with transfer frequency modulation in channels with constant parameters when incorrect reception
Type of article: scientific article
DOI: 10.18127/j00338486-201912(20)-04
UDC: 621.391
Authors:

S.V. Dvornikov – Dr.Sc.(Eng.), Professor, 

Department of Telecommunication, S.M. Budjonny Military Academy of Signal Corps (Saint Petersburg) E-mail: practicdsv@yandex.ru

E.A. Popov – Ph.D.(Eng.), Associate Professor, 

Higher School of Applied Physics and Space Technologies of Peter The Great St. Petersburg Polytechnic University E-mail: popov@spbstu.ru

A.A. Balykov – Post-graduate Student, 

Department of Telecommunication, S.M. Budjonny Military Academy of Signal Corps (Saint Petersburg) E-mail: etomoiadres@mail.ru

S.S. Dvornikov – Ph.D.(Eng.), Head of Department, 

S.M. Budjonny Military Academy of Signal Corps (Saint Petersburg) E-mail: dvornik.92@mail.ru

Abstract:

The complex signal-noise environment in the decameter wavelength range stimulates the search for new types of signals that can increase the transmission speed with little loss in noise immunity. Of interest is the use of signals with permutation frequency modulation (FFM).

The article presents an analytical approach to calculating the noise immunity of signals with permutation frequency modulation in which the current choice of combination of tone oscillations is determined by a constant weight code. An analytical expression is obtained for calculating the probability of error under incoherent reception in channels with constant parameters. The results of a comparative analysis of the noise immunity of the permutation frequency modulation and multi-position frequency modulation signals are carried out. Graphs of the dependence of the probability of bit error on the ratio of bit energy to spectral density of noise power are presented. Practical significance. The results obtained make it possible to consider IFM signals as an alternative solution to signals with orthogonal frequency multiplexing used in ionospheric radio channels in order to combat intersymbol interference.

Pages: 24-31
References
  1. Slepian D. Permutation modulation. Proceedings of the IEEE. March 1965. V. 53. № 3. P. 228−236.
  2. Ishikawa N., Sugiura S., Hanzo L. 50 years of permutation, spatial and index modulation: From classic RF to visible light communications and data storage. IEEE Commun. Surv. Tuts. 3rd Quart 2018. V. 20. № 3. P. 1905−1938.
  3. Ishikawa N. Space-, time-, and frequency-domain permutation modulation designed for microwave and optical wireless communications. Ph. D. dissertation, Tokyo University of Agriculture and Technology. 2017.
  4. Makovii V.A., Chupeev S.A. Signaly s perestanovochnoi modulyatsiei i ikh svoistva. Teoriya i tekhnika radiosvyazi. 2010. № 1. S. 13−24. (in Russian)
  5. Ishikawa N., Rajashekar R., Sugiura S., Hanzo L. Generalized spatial-modulation-based reduced-RF-chain millimeter-wave communications. IEEE Transactions on Vehicular Technology. 2017. V. 66. № 1. P. 879−883.
  6. Oliver Henkel. Arbitrary Rate Permutation Modulation for the Gaussian Channel. Fraunhofer German-Sino Lab for Mobile Communications – MCI. 2007. № 4.
  7. Sugiura S., Ishihara T., Nakao M. State-of-the-art design of index modulation in the space, time, and frequency domains: Benefits and fundamental limitations. IEEE Access. 2017. V. 5. P. 21 774−21 790.
  8. Nordio A., Viterbo E. Permutation modulation for fading channels. Proc. 10th Int. Conf. Telecommun. February 2003. V. 2. P. 1177−1183.
  9. Muhammad Hanif, Ha H. Nguyen. Non-Coherent Index Modulation in Rayleigh Fading Channels. IEEE Communications letters. July 2019. V. 23. № 7. P. 1153−1156.
  10. Wen M., Cheng X., Yang L. Index Modulation for 5G Wireless Communications. Berlin (Germany). Springer. 2016.
  11. E. Ba¸sar, Aygölü Ü., Panayirci E., Poor H.V. Orthogonal frequency division multiplexing with index modulation. IEEE Trans. Signal Process. November 2013. V. 61. № 22. P. 5536−5549.
  12. I. Al-Nahhal, Dobre O.A., Ikki S. Low complexity decoders for spatial and quadrature spatial modulations–invited paper. Proc. IEEE 87th Veh. Technol. Conf. June 2018. P. 1−5.
  13. Bykhovskii M.A. Pomekhoustoichivosti priema signalov pri perestanovochnoi modulyatsii. T-Comm: Telekommunikatsii i transport. 2015. T. 9. № 4. S. 12−16. (in Russian)
  14. Proakis J. Digital Communications. 4th ed. New York, NY, USA: McGraw-Hill. 2001.
  15. Gallager R. Teoriya informatsii i nadezhnaya svyaz. M.: Sov. radio. 1974. 720 s. (in Russian)
  16. Fink L.M. Teoriya peredachi diskretnykh soobshchenii. M.: Sov. radio. 1970. 533 s. (in Russian)
  17. Bestugin A.R., Dvornikov S.V., Kryachko A.F., Okov I.N., Kochetkov A.O., Rusin A.A. Issledovanie subkanalnykh shumov signalov, sformirovannykh po tekhnologii ortogonalnogo chastotnogo multipleksirovaniya. Voprosy radioelektroniki. Ser. Tekhnika televideniya. 2018. № 3. S. 123−129. (in Russian)
  18. Dvornikov S.V. Metod obnaruzheniya signalov diapazona VCh na osnove dvukhetapnogo algoritma prinyatiya resheniya. Nauchnoe priborostroenie. 2005. T. 15. № 3. S. 114−119. (in Russian)
  19. Dvornikov S.V., Saukov A.M. Modifikatsiya chastotno-vremennykh opisanii nestatsionarnykh protsessov na osnove pokazatelnykh i stepennykh funktsii. Nauchnoe priborostroenie. 2004. T. 14. № 3. S. 76−85. (in Russian)
  20. Dvornikov S.V., Dvornikov S.S., Spirin A.M. Sintez manipulirovannykh signalov na osnove veivlet-funktsii. Informatsionnye tekhnologii. 2013. № 12. S. 52−55. (in Russian)
  21. Dvornikov S.V., Manaenko S.S., Dvornikov S.S., Pogorelov A.A. Sintez fazomanipulirovannykh veivlet-signalov. Informatsionnye tekhnologii. 2015. T. 21. № 2. S. 140−143. (in Russian)
Date of receipt: 14 ноября 2019 г.