350 rub
Journal Radioengineering №12 for 2019 г.
Article in number:
Algorithms of immediate coding in high-telephone telemetric systems
Type of article: scientific article
DOI: 10.18127/j00338486-201912(19)-03
UDC: 550.832.9: 004.272
Authors:

K.T. Tyncherov – Dr.Sc.(Eng.), Professor, Head of Department, 

Branch of Ufa State Petroleum Technological University (Oktyabrsky)

E-mail: academic-mvd@mail.ru

V.Sh. Mukhametshin – Dr.Sc.(Geol.-Mineral.), Professor, Head of Department, 

Branch of Ufa State Petroleum Technological University (Oktyabrsky)

E-mail: vsh@of.ugntu.ru

M.V. Selivanova – Undergraduate, 

Branch of Ufa State Petroleum Technological University (Oktyabrsky) E-mail: selivanovamara@gmail.com

Abstract:

In the oil and gas industry, in the construction (oriented drilling) of wells and the development of fields, one of the problems is a large amount of commercial information that must be transferred to control centers using various communication channels. At the same time, the reliability of information transmission plays an important role.

Achieving high reliability of information transmission, i.e., ensuring the reliability of its recovery at the receiving end of the transmission line, is provided not so much by improving the technical means of transmitting information as by using various methods of encoding information. This is explained by the fact that any possible increase in reliability is too expensive and sometimes requires the development of complex protective measures. Correctly selected coding method is able to provide the greatest resistance to possible random distortions. For this, the received information is processed, which allows eliminating the interference introduced into it, clearing it of errors and achieving compliance with what was sent from the transmitting end of the line.

The most attractive in the problems of providing high reliability of signal transmission is the noise-proof code in the residue system (residual class system). A system of deductions with high efficiency is used in algorithms of digital signal processing based on a large volume of such computational operations as addition and multiplication. That is why the task of providing high reliability of communication channels for the transmission of information about oriented drilling and the state of wells over a variety of geophysical parameters is relevant for modern oil and gas complexes.

The article investigates the possibilities of correcting linear codes of the system of deductions for their suitability to ensure the reliability of transmitted telemetry signals by detecting and correcting the errors that occur.

Pages: 25-32
References
  1. Yakupov R.F., Mukhametshin V.S., Tyncherov K.T. Filtration model of oil coning in a bottom water-drive reservoir. Periodico Tche Quimica. 2018. V. 15. № 30. P. 725−733.
  2. Polyakov V.N., Zeigman Yu.V., Kotenyov Yu.A., Mukhametshin V.V., Sultanov Sh.KH., Chizhov A.P. Sistemnoe            reshenie tekhnologicheskikh problem zakanchivaniya stroitelstva skvazhin. Nanotekhnologii v stroitelstve. 2018. T. 10. № 1. S. 72−87. (In Russian).
  3. Mukhametshin V.V., Andreev V.E. Povyshenie effektivnosti otsenki rezultativnosti tekhnologii, napravlennykh na rasshirenie ispolzovaniya resursnoi bazy mestorozhdenii s trudnoizvlekaemymi zapasami. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. T. 329. № 8. S. 30−36. (In Russian).
  4. Rogachev M.K., Mukhametshin V.V. Kontrol i regulirovanie protsessa solyanokislotnogo vozdeistviya na prizaboinuyu zonu skvazhin po geologo-promyslovym dannym. Zapiski Gornogo instituta. 2018. T. 231. S. 275−280. (In Russian).
  5. Akushskii I.Ya., Yuditskii D.I. Mashinnaya arifmetika v ostatochnykh klassakh. M.: Sov. radio. 1968. 439 s. (In Russian).
  6. Chervyakov N.I., Tyncherov K.T., Veligosha A.V. Vysokoskorostnaya tsifrovaya obrabotka signalov s ispolzovaniem nepozitsionnoi arifmetiki. Radiotekhnika. 1997. № 10. S. 23−27. (In Russian).
  7. Donald E. Knuth Supernatural numbers. The Mathematical Gardner. Ed. by David A. Klarner. 1981. P. 310−325.
  8. Clenshaw C.W. and Olver F.W.J. Beyond floating point. J. Assoc. Comput. Mach. 1984. № 31. P. 319−328.
  9. Clenshaw C.W., Lozier D.W., Olver F.W.J. and Turner P.R. Generalized exponential and logarithmic functions. Comput. Math. Appl. 1986. № 12B. P. 1091−1101.
  10. Clenshaw C.W., Olver F.W.J. and Turner P.R. Level-index arithmetic: an introductory survey. Numerical Analysis and Parallel Processing. Ed. by P.R. Turner.Springer-Verlag. Lecture Notes in Mathematics. 1987. № 1397. P. 95−168.
  11. Clenshaw C.W. and Olver F.W.J. Level-index arithmetic operations. SIAM J. Num. Anal. 1987. № 24, 2 (Apr.). P. 470−485.
  12. Clenshaw C.W. and Turner P.R. The symmetric level-index system. IMA J. Numer. Anal. 1988. № 8. P. 517−526.
  13. Peter R. Turner A software implementation of SLI arithmetic. In Proc. 9th Symp. on Computer Arithmetic. IEEE Computer Society Press. 1989. P. 18−24.
  14. Lozier D.W. and Olver F.W.J. Closure and precision in level-index arithmetic. SIAM J. Numer. Anal. 1990. № 27. P. 1295−1304. (In this paper he shows that arithmetic using the four standard operators is closed in a level-index system with level <= 6 and mantissa <= 5,500,000 bits.).
  15. Tyncherov K.T., Mukhametshin V.Sh., Khuzina L.B. Method to control and correct telemtry well information in the basis of residue number system. Journal of fundamental and applied sciences J Fundam Appl Sci. 2017. № 9(2S). P. 1370−1374.
  16. Tyncherov K.T., Chervyakov N.I., Selivanova M.V., Kalmykov I.A. Method of increasing the reliability of telemetric well information transmitted by the wireless communication channel. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018. № 329(3). P. 36−43.
  17. Tyncherov K.T., Selivanova M.V. Method of correction of telemetric well information in the basis of the system of residual classes with one control basis. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018. № 329(3). P. 36−43.
  18. Chervyakov N.I. et al. The architecture of a fault-tolerant modular neurocomputer based on modular number projections. Neurocomputing. 2017.
  19. Chervyakov N.I. et al. Residue-to-binary conversion for general moduli sets based on approximate Chinese remainder theorem. International Journal of Computer Mathematics. 2017. V. 94. № 9. P. 1833−1849.
  20. Chervyakov N.I. et al. An efficient method of error correction in fault-tolerant modular neurocomputers. Neurocomputing. 2016. V. 205. P. 32−44.
  21. Chervyakov N.I. et al. Comparison of modular numbers based on the chinese remainder theorem with fractional values. Automatic Control and Computer Sciences. 2015. V. 49. № 6. P. 354−365.
  22. Chervyakov N.I. et al. An approximate method for comparing modular numbers and its application to the division of numbers in residue number systems. Cybernetics and Systems Analysis. 2014. V. 50. № 6. P. 977−984.
  23. Chervyakov N.I., Lyakhov P.A., Babenko M.G. Digital filtering of images in a residue number system using finite-field wavelets. Automatic Control and Computer Sciences. 2014. V. 48. № 3. P. 180−189.
  24. Hosseinzadeh M., Jassbi S.J. and Navi K. A Novel Multiple Valued Logic OHRNS Moduli in Adder Circuit. International Conference on Engineering and Technology. 2007. № 25. P. 128−132.
  25. Goel S., Kumar A. and Bayoumi M.A. Design of Robust, Energy-Efficient Full Adders for Deep-Submicrometer Design Using HybridCMOS Logic Style. IEEE Transactions on Very Large Scale Integration Systems. 2006. № 14(12).
  26. Hassoune I., Flandre D., O’Connor I. and Legat J.D. ULPFA: A New Efficient Design of a PowerAware Full Adder. IEEE Transactions on Circuits and Systems I: Regular Papers. 2010. № 57(8).
Date of receipt: 24 июля 2019 г.