350 rub
Journal Radioengineering №11 for 2019 г.
Article in number:
Influence of localized states on the effective height of metal – amorphous hydrogenated silicon potential barrier
Type of article: scientific article
DOI: 10.18127/j00338486-201911(18)-10
UDC: 537.311.322
Authors:

N.V. Vishnyakov – Ph.D.(Eng.), Associate Professor, 

Department «Micro- and nanoelectronics», Ryazan State Radio Engineering University named after V.F. Utkin E-mail: rcpm-rgrtu@yandex.ru; rcpm@rsreu.ru

Abstract:

The effect of lowering the effective height of the potential barrier at the metal – amorphous hydrogenated silicon contact is considered. This contact can act as a locking barrier or ohmic contact in thin-film electronics elements on disordered semiconductors. The height of the potential barrier and contact phenomena are significantly influenced by donor-like localized states located near the Fermi level in the band gap of an amorphous semiconductor. This effect is manifested by the action of image forces (Schottky effect) and an increase in the tunnel transparency of the barrier (tunnel effect), which lead to a decrease in the effective height of the barrier under applied reverse bias voltage. The high density of electrically active localized states in amorphous hydrogenated silicon (gF0≥1016cm−3eV−1) influences the distribution of the electric potential along the coordinate on the metal - amorphous semiconductor contact and leads to the formation of a tunnel-transparent near-contact region. According to the calculation performed in the work, at gF0=1019cm−3eV−1 and an external reverse voltage of 2 V, the decrease in the effective barrier height due to tunneling is about 0,35 eV. Lowering the height of the barrier due to the action of image forces also takes place, but it is «masked» by the tunnel effect. For similar conditions, this decrease is about 0,16 eV.

A comparative calculation was carried out for the case of metal contact with strongly doped crystalline silicon, which showed significant differences in the results of the tunnel effect and the Schottky effect in the case of metal contact with crystalline and amorphous hydrogenated silicon. For the metal-crystalline silicon barrier, the Schottky effect has a more notable effect on lowering the effective barrier height than the tunnel effect under selected boundary conditions in contrast to the metal - amorphous silicon barrier. It should be noted that the calculations did not take into account the effect of surface states in silicon at the interface with the metal. The ideas presented in the paper allowed us to propose new ways of forming tunnel quasi ohmic contacts in thin-film structures based on unalloyed or weakly alloyed amorphous hydrogenated silicon by creating a tunnel-transparent near-surface layer. The relevance of this work is providing a detailed understanding of the nature of the metal – amorphous semiconductor contact to increase the efficiency of thin-film electronics devices based on disordered semiconductor materials.

Pages: 71-79
References
  1. Amorfnye poluprovodniki i pribory na ikh osnove. Pod red. I.M. Khamakavy. Metallurgiya. 1986. 376 s. (in Russian)
  2. Avachev A.P., Vishnyakov N.V., Mishustin V.G., Utochkin I.G. Tonkoplenochnye polevye tranzistory na neuporyadochennykh poluprovodnikakh. Problemy rascheta i primeneniya. Vestnik Ryazanskoi gosudarstvennoi radiotekhnicheskoi akademii. 2004. № 14. S. 83−87. (in Russian)
  3. Roderik E.Kh. Kontakty metall – poluprovodnik: Per. s angl.. Pod red. G.V. Stepanova. M.: Radio i svyaz. 1982. 208 s. (in Russian)
  4. Meden A., Sho M. Fizika i primenenie amorfnykh poluprovodnikov: Per. s angl. M.: Mir. 1991. 670 s. (in Russian)
  5. Vikhrov S.P., Vishnyakov N.V., Maslov A.A. Osobennosti formirovaniya barera v strukturakh metall – neuporyadochennyi poluprovodnik. Izvestiya VUZov. Ser. Elektronika. 2000. № 3. S. 48−54. (in Russian)
  6. Avachev A.P., Vishnyakov N.V., Vikhrov S.P., Mishustin V.G., Utochkin I.G., Popov A.A. Formirovanie potentsialnykh barerov v nelegirovannykh neuporyadochennykh poluprovodnikakh. Fizika i tekhnika poluprovodnikov. 2005. T. 39. № 10. S. 1189−1194. (in Russian)
  7. Bodyagin N.V, Vikhrov S.P., Vishnyakov N.V., Mishustin V.G. Fizicheskie protsessy v barernykh strukturakh na osnove neuporyadochennykh i nanostrukturirovannykh poluprovodnikov. Radiotekhnika. 2012. № 3. S. 81−89. (in Russian)
  8. Vishnyakov N.V., Mishustin V.G., Utochkin I.G. Raschet profilya potentsialnogo barera na granitse metall - neuporyadochennyi poluprovodnik. Vestnik Ryazanskoi gosudarstvennoi radiotekhnicheskoi akademii. 2002. № 10. S. 74−78. (in Russian)
  9. Martinson L.K., Smirnov E.V. Kvantovaya fizika: Ucheb. posobie. Izd. 4-e. M: Izd-vo MGTU im. N.E. Baumana. 2012. 527 s. (in Russian)
  10. Vishnyakov N.V. Eksperimentalnoe opredelenie vysoty potentsialnogo barera v strukturakh metall - gidrogenizirovannyi amorfnyi kremnii. Vestnik Ryazanskoi gosudarstvennoi radiotekhnicheskoi akademii. 2003. № 12. S. 86−90. (in Russian)
  11. Anoshkin K.O., Vikhrov S.P., Vishnyakov N.V., Mishustin V.G. Tokoperenos cherez barer na kontakte metall - nekristallicheskii poluprovodnik: osobennosti rascheta pryamykh i obratnykh VAKh. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2007. № 22. S. 86−88. (in Russian)
  12. Zi S.M. Fizika poluprovodnikovykh priborov. V 2-kh knigakh. Kn.1: Per. s angl. Izd. 2-e, dop. i pererab. M: Mir. 1984. 456 s. (in Russian)
  13. Alpatov A.V., Verin I.A., Vikhrov S.P, Vishnyakov N.V., Kostryukov S.A., Mishustin V.G. Issledovanie kontaktnykh yavlenii v fotoelektricheskikh datchikakh na osnove nanostrukturirovannykh neuporyadochennykh poluprovodnikov. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2009. № 30. S. 58−62. (in Russian)
  14. Ilchenko V.V., Strikha V.I. Vliyanie sil izobrazheniya na volt–ampernuyu kharakteristiku kontakta metall – a-Si:H. Izvestiya VUZov. Ser. Fizika. 1985. № 2. S. 88−92. (in Russian)
  15. Strikha V.I., Ilchenko V.V. Uchet tunnelirovaniya cherez oblast prostranstvennogo zaryada v kontakte metall-amorfnyi kremnii. Izvestiya VUZov. Ser. Fizika. 1986. № 11. S. 3−7. (in Russian)
  16. Mariucci L., Colurra C., Frova A. Effects of tunneling on a-Si:H Shottky Barriers. J. Appl. Phys. 1987. V. 62. № 8. P. 3285−3287. DOI: 10.1063/1.339335.
  17. Aflatoonni K., Hornsey R., Nathan A. Reverse Current Instabilities in amorphous Silicon Schottky Diodes: Modeling and Experiments. IEEE Transaction on electron devices. July 1999. V. 46. № 7. P. 1417−1422. DOI: 10.1109/16.772485.
  18. Pat. RF na izobretenie № 2229755 ot 27.05.2004 g. Sposob sozdaniya omicheskikh kontaktov v tonkoplenochnykh ustroistvakh na amorfnykh gidrogenizirovannykh poluprovodnikakh. Vikhrov S.P., Vishnyakov N.V., Maslov A.A., Mishustin V.G., Popov A.A  (Zayavka № 2002117585 ot 01.07.2002 g.). (in Russian)
  19. Pat. RF na izobretenie № 2392688 ot 20.06.2010 g. Sposob sozdaniya omicheskikh kontaktov v tonkoplenochnykh ustroistvakh na amorfnykh nelegirovannykh poluprovodnikakh. Avachev A.P., Vikhrov S.P., Vishnyakov N.V., Mitrofanov K.V., Mishustin V.G., Popov A.A.  (Zayavka № 2009118861 ot 20.05.2009 g.). (in Russian)
Date of receipt: 3 октября 2019 г.