350 rub
Journal Radioengineering №11 for 2019 г.
Article in number:
Quality characteristics estimation of the coordinates of manmade space objects
Type of article: scientific article
DOI: 10.18127/j00338486-201911(17)-06
UDC: 621.383
Authors:

K.P. Masyukov – Ph.D.(Eng.), Associate Professor, 

Mozhaysky Military Space Academy (Saint Petersburg)

E-mail: konstanmasuykov@rambler.ru

D.Yu. Konovalov – Ph.D.(Eng.), Lecturer, 

Mozhaysky Military Space Academy (Saint Petersburg)

E-mail: duk2103@rambler.ru

D.V. Miheev – Ph.D.(Eng.), Associate Professor, 

Mozhaysky Military Space Academy (Saint Petersburg) E-mail: Timonmicro@mail.ru

Abstract:

According to existing estimates, there are more than 500 000 man-made space objects (TSO) with a size of 1…10 cm and several tens of millions of small objects (millimeter size) in near-earth space (NES). The modern way of space exploration, unfortunately, leads to environmental threats to the atmosphere and NES. Large and medium-sized space objects can be observed by ground-based means of space monitoring – using optical methods and radar. In this case, objects smaller than 10 cm can be observed by existing means of control only in low orbits (up to 2000 km). Observation of TSO (elements of «space debris») is an urgent task. The characteristics of the quality of estimation of coordinates investigated by TSO are the measurement accuracy achievable with the help of the proposed processing algorithm and illustrated by the corresponding detection curves. Such indicators rely on the root-mean-square errors of coordinate estimation, as well as the probability of correct detection. The purpose of the description is a schematic demonstration and analysis of achievable characteristics using the developed algorithm. In geostationary and highly elliptical orbits, it is carried out by ground-based passive optoelectronic systems (GPOES) [1]. The optical complex presented in [2] and other GPOES in the observation of «space debris» are single-position systems. Taking into account trends of noisy fields and joint data processing of several separate optical complexes can significantly improve the quality of control over TSO [3].

The article presents an adaptive algorithm for the detection of TSO, which expands the possibility of evaluating the results of primary signal processing taking into account the gradient coefficients of noisy fields and allows the implementation to provide significant advantages over a single-position optoelectronic system.

Pages: 59-65
References
  1. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor – ugroza chelovechestvu. M.: IKI RAN. 2013. 207 s. (In Russian).
  2. Yakushenkov Yu.G. Optiko-elektronnye sistemy 3-go pokoleniya: sovremennoe sostoyanie, perspektivy razvitiya. Sb. materialov VIII Mezhdunar. konf. «Optiko-elektronnye pribory i ustroistva v sistemakh raspoznavaniya obrazov, obrabotki izobrazhenii i simvolnoi informatsii 2008». Ch. 1. S. 12−13. (In Russian).
  3. KHromov L.I., Tsytsulin A.K., Kulikov A.N. Videoinformatika. M.: Radio i svyaz. 1991. 192 s. (In Russian).
  4. Monitoring tekhnogennogo zasoreniya okolozemnogo prostranstva i preduprezhdenie ob opasnykh situatsiyakh, sozdavaemykh kosmicheskim musorom. Pod red. Yu.N. Makarova. TsNIImash. 2015. 244 s. (In Russian).
  5. Berezin V.V., Umbitaliev A.A., Fakhni Sh.S. i dr. Tverdotelnaya revolyutsiya v televidenii. Televizionnye sistemy na osnove priborov s zaryadnoi svyazyu, sistem na kristalle i video sistem na kristalle. Pod red. A.A. Umbitalieva i A.K. Tsytsulina. M.: Radio i svyaz. 2006. 312 s. (In Russian).
  6. KHuang T.S. Bystrye algoritmy v tsifrovoi obrabotke izobrazhenii. M.: Radio i svyaz. 1984. 224 s. (In Russian).
  7. Umbitaliev A.A., Tsytsulin A.K., Pyatkov V.V. i dr. Teoriya i praktika kosmicheskogo televideniya. Pod red. A.A. Umbitalieva,A.K. Tsytsulina. SPb.: NII televideniya. 2017. 386 s. (In Russian).
  8. Kulikov S.V. Reshenie zadachi raspoznavaniya izluchayushchikh obieektov na osnove ispolzovaniya algoritma sravneniya spektralnykh portretov. Naukoemkie tekhnologii. 2016. № 12. (In Russian).
  9. Gorbulin V.I., Liferenko V.D., Kulikov S.V., Gudaev R.A., Baldychev M.T. Metodika raspoznavaniya tipov kosmicheskikh obieektov na osnove sovokupnosti radiotekhnicheskikh priznakov s uchetom vesovykh koeffitsientov. Uspekhi sovremennoi radioelektroniki. 2017. № 9. (In Russian).
  10. Dudalev G.V., Katyukha R.V., Kulikov S.V., Pivkin I.G., Demyanov A.V. Kombinirovannye metody sinteza avtomatizirovannykh intellektualnykh sistem upravleniya slozhnymi tekhnicheskimi obieektami. Naukoemkie tekhnologii. 2018. № 10. S. 57-62. DOI: 10.18127/j19998465-201810-10. (In Russian).
Date of receipt: 27 сентября 2019 г.