D.G. Pantenkov – Ph.D.(Eng.), Head of Department of Radiocommunication Systems, Kronstadt (Moscow)
E-mail: Dmitrii.Pantenkov@kronshtadt.ru
A.A. Lomakin – Ph.D.(Eng.), Leading Research Scientist,
Kronstadt (Moscow)
E-mail: Andrei.Lomakin2@kronshtadt.ru
Complexes with unmanned aerial vehicles are used to monitor the earth's surface in a wide range of wavelengths of the electromagnetic spectrum, data retransmission, cargo delivery and many other areas. At the same time, much attention is paid to the issues of over-the-horizon control of unmanned aerial vehicles via satellite radio channels, which should have high characteristics in stealth, imitability and noise immunity in relation to a complex electronic environment with the possible participation of an eventual enemy and countermeasures on its part.
The relevance of the work is determined by the lack of currently departmental satellite communication systems adapted to the requirements of information retransmission between unmanned aerial vehicles (UAV) and ground control station.
The authors briefly describe the main methods of improving the stability of information transmission through communication channels exposed to intentional interference and show that the most vulnerable link in the chain of direct retransmission are commercial spacecraft, which do not have a system of forming a minimum diagram of the interference source.
Based on the obtained analytical dependences, it is concluded that on the earth station – spacecraft line, when transmitting control commands, the increase in noise immunity is achieved both by the formation of a reserve of equivalent isotropic radiated power (EIRP) of the earth station and by a moderate, up to 13…20 dB, expansion of the signal spectrum. On the line UAV – spacecraft when transmitting telemetry data due to limitations on the EIRP of the onboard terminal UAV, the main way of dealing with willful obstruction of the operation is the extension of the spectrum. The effectiveness of the measure reaches 40…45 dB and depends on the speed of telemetry, as well as the width of the allotted band of the satellite transponder. In this case, the importance of the correct choice of the amount of information and methods of its compression.
The issues discussed in the article are of interest not only for specialists designing communication systems with UAV, but also in many cases the organization of stable channels through commercial satellite communication systems. The practical significance lies in the fact that the article can be useful for scientific and technical specialists in the field of aviation and satellite radio communications, which already at the stage of pre-contract works can lay the required parameters of radio signals for the formation of control teams, check them with the use of modern computer-aided design systems, which will provide good results in the testing and operation of complexes with unmanned aerial vehicles.
- Kozhevnikov E. O povyshenii pomekhozashchishchennosti sputnikovykh liniy svyazi kompleksirovaniem signal’nykh i prostranstvennykh metodov. Sb. statey po materialam V Mezhdunar. nauchno-prakticheskoy konf. «Nauka vchera, segodnya, zavtra». № 5(5). Novosibirsk: Izd-vo «SibAK». 2013. S. 30−34. (In Russian).
- Vendik O., Kalinin S., Kozlov D. Fazirovannaya antennaya reshetka s upravlyaemoy formoy diagrammy napravlennosti. Zhurnal tekhnicheskoy fiziki. 2013. T. 83. № 10. S. 117−121. (In Russian).
- Stepanov A., Verzunov G., Ganziy D. Zashchita ot radiopomekh v sputnikovoy svyazi. Tekhnologii i sredstva svyazi. 2008. № 6. S. 90−93. (In Russian).
- Chirov D., Lobov E. Vybor signal’no-kodovoy konstruktsii dlya komandno-telemetricheskoy linii radiosvyazi s bespilotnymi letatel’nymi apparatami sredney i bol’shoy dal’nosti. T-COMM: Telekommunikatsii i transport. 2017. T. 11 № 10. S. 21−28. (In Russian).
- Sklyar B. Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie: Per. s angl. M.: Izd. dom «Vil’yams». 2003. S. 767−773. (In Russian).
- Pat. RF na poleznuyu model’ № 191 165, MPK N04 V 7/02 (2006.01). Bortovoy terminal radiosvyazi bespilotnogo letatel’nogo apparata. Dolzhenkov N.N., Abramov A.V., Egorov A.T., Lomakin A.A., Pantenkov D.G.; zayavitel’ i patentoobladatel’ AO «Kronshtadt». 26.07.2019. Byul. № 21. (In Russian).
- Dolzhenkov N.N., Pantenkov D.G., Egorov A.T., Lomakin A.A., Litvinenko V.P., Velikoivanenko V.I., Lyu-Ke-Syu E.Yu. Tekhnicheskie kharakteristiki kompleksa sredstv sputnikovoy radiosvyazi s bespilotnymi letatel’nymi apparatami. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. T. 15. № 3. S. 74−82. (In Russian).
- Dolzhenkov N.N., Pantenkov D.G., Litvinenko V.P., Lomakin A.A., Egorov A.T., Gritsenko A.A. Integrirovannyy kompleks dal’ney radiosvyazi dlya povysheniya effektivnosti resheniya tselevykh zadach bespilotnymi letatel’nymi apparatami. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. T. 15. № 3. S. 102−108. (In Russian).
- Testoedov N.A., Kosenko V.E., Vygonskiy Yu.G., Kuzovnikov A.V., Mukhin V.A., Chebotarev V.E., Somov V.G. Kosmicheskie sistemy retranslyatsii. M.: Radiotekhnika. 2017. 448 s. (In Russian).
- Spetsial’naya radiosvyaz’. Razvitie i modernizatsiya oborudovaniya i ob’‘ektov. Pod red. A.L. Buzova, S.A. Bukashkina. M.: Radiotekhnika. 2017. 448 s. (In Russian).
- Sovremennye tekhnologii radiomonitoringa v sputnikovykh sistemakh svyazi i retranslyatsii. Pod red. A.V. Kuzovnikova. M.: Radiotekhnika. 2015. 216 s. (In Russian).
- Zhuravlev V.I., Rudnev A.N. Tsifrovaya fazovaya modulyatsiya. M.: Radiotekhnika. 2012. 208 s. (In Russian).
- Pantenkov D.G., Gusakov N.V. Komp’yuternoe modelirovanie aktivnoy fazirovannoy antennoy reshetki. Kosmicheskaya tekhnika i tekhnologii. 2013. № 1. S. 32−38. (In Russian).