350 rub
Journal Radioengineering №10 for 2019 г.
Article in number:
Estimation of the tangential component of the velocity vector of the ground moving target in SAR during the rotation of the phase center of the real antenna
Type of article: scientific article
DOI: 10.18127/j00338486-201910(15)-12
UDC: 321.396.96
Authors:

B.G. Tatarskiy – Dr.Sc.(Eng.), Professor, 

Director of Scientific and Educational Center, JSC «Corporation «Vega» (Moscow); 

Professor, Department « Radiolocation, Radionavigation and Avionics», 

Moscow Aviation Institute (National Research University)

E-mail: boris-tatarsky@inbox.ru

D.A. Yasentsev – Ph.D.(Eng.), Associate Professor, 

Department « Radiolocation, Radionavigation and Avionics», 

Moscow Aviation Institute (National Research University) E-mail: yasentsev@gmail.com

Abstract:

Ground moving targets indication (GMTI) is one of the main modes of operation of airborne radar systems designed to review the underlying surface. The complexity of solving this problem occur because of small velocity and small dimensions of the observed terrestrial targets. In the GMTI mode, the problems of determining the location of the GMT, assessing its radial and tangential components of the velocity vector, and indication against the background of the radar image of the underlying surface are solved.

Detection of small-sized GMT in the onboard radar survey of the underlying surface is carried out in conjunction with the mode of synthesizing the antenna aperture, which is implemented by a long coherent accumulation of the trajectory signal in the translational motion of the radar carrier. Use of synthetic aperture antenna allows you to increase resolution of the radar angle, which allows to significantly increase the ratio of «signal to background» in the permission entry for observable moving targets. The disadvantage of such approaches in the GMT is the migration of the GMT azimuth level, which requires the use of multi-channel (monopulse or interferometric) radar antenna systems and special processing algorithms to compensate.

When rotating the phase center of the real antenna (PC RA) is also possible to form a synthesized aperture, increasing the angular resolution of the onboard radar. This, for example, is carried out when installing weakly directional antennas in the ending of the rotor blade of the helicopter-type carrier. The most difficult task in the GMTI mode is to estimate the tangential component of the GMT velocity vector. The complexity of this problem is due to the fact that the change in distance due to the movement of the target across the line of sight, and, consequently, the change in the phase structure of the signal is very small. Studies have shown that a significant change in the type of response in the presence of the tangential velocity of the target in comparison with the stationary target does not occur. For the detection of targets moving at tangential speed, an additional processing of the tractor signal arising during the rotation of the PC RA is proposed, which consists in splitting the signal implementation into two sub-apertures, with their subsequent joint processing, allowing to distinguish the phase difference of the signal sub-apertures. The results of modeling, showing the possibility of the described processing.

Pages: 74-81
References
  1. Aviatsionnye sistemy radiovideniya. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2015. (in Russian)
  2. Verba V.S., Neronskii L.B., Osipov I.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya. Pod red. V.S. Verby. M.: Radiotekhnika. 2010. (in Russian)
  3. Koshelev V.I., Kirdyashkin V.V., Sychev M.I. Yasentsev D.A. Aktualnye voprosy radiolokatsii. Pod red. P.A. Bakuleva. M.: MAI. 2016. (in Russian)
  4. Radiolokatsionnye sistemy aviatsionno-kosmicheskogo monitoringa zemnoi poverkhnosti i vozdushnogo prostranstva. Pod red. V.S. Verby, B.G. Tatarskogo. M.: Radiotekhnika. 2014. (in Russian)
  5. Yasentsev D.A. Osobennosti obrabotki signalov v RSA pri vrashchenii fazovogo tsentra realnoi antenny. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2018. № 5. S. 26−32. DOI 10.18127/j20700814-201805-01. (in Russian)
  6. Tatarskii B.G., Maistrenko E.V., Yasentsev D.A. Perspektivnye radiolokatsionnye sistemy nositelei vertoletnogo tipa s sintezirovaniem apertury antenny. Sb. dokladov konf. «Aktualnye voprosy razvitiya sistem i sredstv vozdushno-kosmicheskoi oborony». 25−27 sentyabrya 2014. Moskva. (in Russian)
  7. Verba V.S., Tatarskii B.G., Yasentsev D.A. i dr. Kompleksy s bespilotnymi letatelnymi apparatami. V 2-kh knigakh. Kn. 1. Printsipy postroeniya i osobennosti primeneniya kompleksov s BLA. Pod red. V.S. Verby i B.G. Tatarskogo M.: Radiotekhnika. 2016. (in Russian)
  8. Yasentsev D.A., Sergeev A.V. Issledovanie osobennostei traektornogo signala pri vrashchenii fazovogo tsentra realnoi antenny i nablyudenii nazemnykh dvizhushchikhsya tselei. Uspekhi sovremennoi radioelektroniki. 2018. № 10. S. 60−66. DOI 10.18127/j20700784201810-08. (in Russian)
  9. Tatarskii B.G., Yasentsev D.A., Maistrenko E.V. Selektsiya dvizhushchikhsya nazemnykh tselei v rezhime sintezirovaniya apertury antenny pri kombinirovannoi postupatelno-vrashchatelnoi traektorii dvizheniya fazovogo tsentra antenny. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2016. № 1. S. 21−29. (in Russian)
  10. Yasentsev D.A. Osobennosti selektsii nazemnykh dvizhushchikhsya tselei v RLS s sintezirovaniem apertury pri vrashchenii fazovogo tsentra realnoi antenny. Sb. trudov XII Vseros. nauchno-tekhnich. konf. «Radiolokatsiya i radiosvyaz». 26−28 noyabrya 2018. Moskva. (in Russian)
  11. Tatarskii B.G., Yasentsev D.A. Kogerentnaya selektsiya nazemnykh dvizhushchikhsya tselei pri vrashchenii fazovykh tsentrov realnykh antenn. Tezisy dokladov 9-i Vseros. konf. «Radiolokatsiya i radiosvyaz». 21−25 noyabrya 2015. (in Russian)
  12. Tatarskii B.G., Yasentsev D.A., Maistrenko E.V., Drozdov D.O. Kogerentnaya selektsiya nazemnykh dvizhushchikhsya tselei pri vrashchenii fazovykh tsentrov realnykh antenn. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2016. № 3. S. 23−28. (in Russian)
Date of receipt: 19 марта 2019 г.