K.T. Tyncherov – Dr.Sc.(Eng.), Professor, Head of Department «Information Technology, Mathematics and Natural
Sciences», branch of Ufa State Petroleum Technological University (Oktyabrsky)
E-mail: academic-mvd@mail.ru
F.A. Ikhsanova – Ph.D.(Pedagogic), Associate Professor, Department «Information Technology, Mathematics and
Natural Sciences», branch of Ufa State Petroleum Technological University (Oktyabrsky)
E-mail: ichs195@mail.ru
M.V. Selivanova – Undergraduate, Department «Information Technology, Mathematics and Natural Sciences», branch of Ufa State Petroleum Technological University (Oktyabrsky) E-mail: selivanovamara@gmail.com
In this paper, the method of the main components for processing and analyzing borehole data arriving at dispatch centers of oil and gas companies via radio communication channels is considered. The initial information contains the results of geophysical exploration of oil and gas wells using gamma and compensated neutron logging using thermal neutrons, as well as other telemetry methods. The applied method allows to significantly reduce the amount of data with preservation of informativeness.
- Pearson K. On lines and planes of closest fit to systems of points in space // Philosophical Magazine. 1901. 2. 559−572.
- Gorban A.N., Kegl B., Wunsch D., Zinovyev A.Y. (Eds.). Principal Manifolds for Data Visualisation and Dimension Reduction, Series: Lecture Notes in Computational Science and Engineering 58. Springer. Berlin – Heidelberg – New York. 2007. XXIV. 340 p. ISBN 9783-540-73749-0.
- Tyncherov K.T., Mukhametshin V.Sh., Khuzina L.B. Method to control and correct telemtry well information in the basis of residue number system // Journal of fundamental and applied sciences J Fundam Appl Sci. 2017. 9(2S). 1370−1374.
- Tyncherov K.T., Chervyakov N.I., Selivanova M.V., Kalmykov I.A. Method of increasing the reliability of telemetric well information transmitted by the wireless communication channel // Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2018. 329(3). S. 36−43.
- Tyncherov K.T., Selivanova M.V. Method of correction of telemetric well information in the basis of the system of residual classes with one control basis // Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2018. 329(3). S. 36−43.
- Jolliffe I.T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY. 2002. XXIX. 487 p. ISBN 978-0387-95442-4.
- Byuyul’ A., Czyofel’ P. SPSS: Iskusstvo obrabotki informaczii. Analiz statisticheskix danny’x i vosstanovlenie skry’ty’x zakonomernostej. SPb.: OOO «DiaSoftYuP». 2002. 603 s.
- Shiryaev A.N. Glava 2, §6. Sluchajny’e velichiny’ II // Veroyatnost’. Izd. 3-e. Cambridge, New York.: MCzNMO. 2004. T. 1. S. 301. 520 s.
- Spravochnik po prikladnoj statistike: Per. s angl. V 2-x tomax / Pod red. E’. Llojda, U. Ledermana. M.: Finansy’ i statistika. 1990. T. 2. 526 c.
- Mxitaryan B.C. Prikladnaya statistika. Osnovy’ e’konometriki. V 2-x tomax. T. 1. Teoriya veroyatnostej i prikladnaya statistika: Uchebnik dlya vuzov / Izd. 2-e, ispr. M: YuNITI-DANA. 2001. 656 s.
- Beloglazov, analiz v zadachax kvalimetrii obrazovaniya / // Izvestiya RAN. Teoriya i sistemy’ upravleniya. 2006. № 6. S. 39−52.
- Shennon K.E’. Matematicheskaya teoriya svyazi. 1948. S. 259−263.
- Nakoplenny’e chastoty’. http://files.school-collection.edu.ru/dlrstore/7e99d586-3192-11dd-bd11-0800200c9a66/index.htm. (data obrashheniya 28.05.2018).
- Graficheskoe izobrazhenie raspredeleniya priznakov. http://yuschikev.narod.ru/psk/lection5-1.html. (data obrashheniya 28.05.2018).
- Kriterij Fishera. http://logic.pdmi.ras.ru/~sergey/teaching/mlau12/05-classifiers.pdf http://www.machinelearning.ru/wiki/index.php. (data obrashheniya 28.05.2018).
- Cangelosi R., Goriely A. Component retention in principal component analysis with application to cDNA microarray data // Biology Direct. 2007. 2:2. (takzhe na sajte PCA).
- Koren Y., Carmel L. Robust linear dimensionality reduction // IEEE Transactions on Visualisation and Computer Graphics. 10 (4) (2004). P. 459−470. A.
- Gorban A.N., Sumner N.R., Zinovyev A.Y. Topological grammars for data approximation // Applied Mathematics Letters. 2007. V. 20. № 4. P. 382−386.
- Gorban A.N., Sumner N.R., Zinovyev A.Y. Beyond The Concept of Manifolds: Principal Trees, Metro Maps and Elastic Cubic Complexes // Gorban A.N. et al(Eds.). LNCSE 58. Springer. 2007. ISBN 978-3-540-73749-0.
- Scholz M., Fraunholz M., Selbig J. Nonlinear Principal Component Analysis: Neural Network Models and Applications // Gorban A.N. et al (Eds.). LNCSE 58. Springer. 2007. ISBN 978-3-540-73749-0.
- Yin H. Learning Nonlinear Principal Manifolds by Self-Organising Maps // Gorban A.N. et al (Eds.). LNCSE 58, Springer. 2007 ISBN 9783-540-73749-0.
- Hyvdrinen A, Karhunen J., Oja E. Independent Component Analysis. A Volume in the Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons, Inc. 2001. XVI+481 pp. ISBN 0-471-40540-X.
- Muresan D.D., Parks T.W. Adaptive Principal Components and Image Denoising // IEEE International Conference on Image Processing (ICIP). September 2003. P. 101−104.
- Politicheskij atlas sovremennosti: Opy’t mnogomernogo statisticheskogo analiza politicheskix sistem sovremenny’x gosudarstv. M.: Izdvo «MGIMO-Universitet». 2007. 272 s.
- Ixsanova F.A., Igtisamova G.R., Ixsanov B.I., Gizetdinov I.A., Lugmanov R.R. Metod glavny’x komponentov dlya ranzhirovaniya ob’‘ektov razrabotki neftyany’x mestorozhdenij // Problemy’ sbora, podgotovki i transporta nefti i nefteproduktov (Ufa). 2016. № 4 (106). S. 11−20.
- Ixsanova F.A., Gizetdinov I.A., Lugmanov R.R., Laty’pov V.R. Primenenie metoda glavny’x komponent dlya resheniya zadach razrabotki neftyany’x zalezhej // Sb. nauchny’x trudov 43-j Mezhdunar. nauchno-texnich. konf. molody’x ucheny’x, aspirantov i studentov, posvyashhenny’j 60-letiyu filiala UGNTU v g. Oktyabr’skom / Otv. red. V.Sh. Muxametshin. Ufa: Izd-vo UGNTU. 2016. T. 2. S. 362−367.