350 rub
Journal Radioengineering №9 for 2018 г.
Article in number:
Regularities of the behavior of the static electrical conductivity of single-walled carbon nanotube films under tension
Type of article: scientific article
DOI: 10.18127/j00338486-201809-18
UDC: 538.9
Authors:

O.E. Glukhova – Dr.Sc.(Phys.-Math.), Professor, Head of Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky

E-mail: GlukhovaOE@info.sgu.ru

G.V. Savostyanov – Post-graduate Student, Assistant, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky

E-mail: savostyanov.gv@gmail.com

Abstract:

To reveal the regularities of the electrical conductivity of single-walled carbon nanotube (SWCNT) films under tension, a coarsegrained model of the film fragment with size of 200×60 nm and thick of 50 nm with randomly oriented tubes was constructed. Using the method of molecular dynamics, it was found that during the stretching process the average number of contacts between tubes decreases nonlinearly. The slower the stretching, the greater this value at maximum stretching. It is shown that stretching promotes the ordering of the tubes in the film. The dynamics of the film resistance under tension and its dependence on the stretching time was obtained by constructing the resistor network.

Pages: 93-98
References
  1. URL = https://www.idtechex.com/research/ (data obrashheniya 02.03.2018).
  2. Bandodkar A.J., Jeerapan I., You J.M., Nuñez-Flores R., Wang J. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability // Nano Lett. 2016. V. 16. P. 721−727.
  3. Cai L., Wang C. Carbon Nanotube Flexible and Stretchable Electronics // Nanoscale Res. Lett. 2015. V. 10. № 320. P. 1−21.
  4. Wang C., Takei K., Takahashi T., Javey A. Carbon nanotube electronics – moving forward // Chem. Soc. Rev. 2013. V. 42. P. 2592−2609.
  5. Noh J.S. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters // Polymers. 2016. V. 8. № 123. P. 1−19.
  6. Cai L., Song L., Luan P., Zhang Q., Zhang N., Gao Q., Zhao D., Zhang X., Tu M., Yang F., Zhou W., Fan Q., Luo J., Zhou W., Ajayan P.M., Xie S. Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection // Sci. Rep. 2013. V. 3. № 3048. P. 1−9.
  7. Chen K., Gao W., Emaminejad S., Kiriya D., Ota H., Nyein H.Y., Takei K., Javey A. Printed Carbon Nanotube Electronics and Sensor Systems // Adv. Mater. 2016. V. 28(22). P. 4397−4414.
  8. Dinh T., Phan H.P., Nguyen T.K., Qamar A., Foisal A.R.M., Viet T.N., Tran C.D., Zhu Y., Nguyen N.T., Dao D.V. Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare // J. Mater. Chem. C. 2016. V. 4. P. 10061−10068.
  9. Jang H., Park Y.J., Chen X., Das T., Kim M.S., Ahn J.H. Graphene-Based Flexible and Stretchable Electronics // Adv. Mater. 2016. V. 28. № 22. P. 4184−4202.
  10. Kim S.J., Choi K., Lee B., Kim Y., Hong B.H. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials // Annu. Rev. Mater. Res. 2015. V. 45. P. 63−84.
  11. Arash B., Park H.S., Rabczuk T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model // Compos. Part B Eng. 2015. V. 80. P. 92−100.
  12. URL = http://www.gromacs.org/ (data obrashheniya 12.03.2018).
  13. Spatially Resolved Transport Properties of Pristine and Doped Single-Walled Carbon Nanotube Networks // J. Phys. Chem. C. 2013. 117. 13324−13330.
  14. URL = http://ngspice.sourceforge.net (data obrashheniya 10.04.2018).
Date of receipt: 17 августа 2018 г.