O.E. Glukhova – Dr.Sc.(Phys.-Math.), Professor, Head of Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky
E-mail: GlukhovaOE@info.sgu.ru
D.S. Shmygin – Post-graduate Student, Assistant, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky
This paper presents the results of a numerical evaluation of the thermal conductivity of a graphene-nanotube film composite with vertical packing of nanotubes between graphene layers. Various topological models of composites are considered. These models are differing in the diameter of nanotubes and the distance between them in the composite. It is shown that the heat-conducting properties of a graphene-nanotube composite are determined mainly by the thermal conductivity of the carbon nanotubes entering into its composition. A method for controlling the thermal conductivity of graphene-nanotubular structures of the considered type is revealed on the basis of the obtained results.
- Nika D.L., Ghosh S., Pokatilov E.P., Balandin A.A. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite // Appl. Phys. Lett. 2009. V. 94. P. 203103-1−203103-4.
- Hone J., Whitney M., Piskoti C., Zettl A. Thermal conductivity of single-walled carbon nanotubes // Phys. Rev. B. 1999. V. 59. P. R2514-1−R2516-3.
- Kim P., Shi L., Majumdar A., Mc Euen P.L. Thermal transport measurements of individual multiwalled nanotubes // Phys. Rev. Lett. 2001. V. 87. P. 215502-1−215502-3.
- Che J., Cagin T., Goddard W.A. Thermal conductivity of carbon nanotubes // Nanotechnology. 2000. V. 11. P. 65−69.
- Pop E., Mann D., Wang Q., Goodson K., Dai H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature // Nano Lett. 2006. V. 6. P. 96−100.
- Donadio D., Galli G. Thermal Conductivity of Isolated and Interacting Carbon Nanotubes: Comparing Results from Molecular Dynamics and the Boltzmann Transport Equation // Phys. Rev. Lett. 2007. V. 99. P. 255502-1−255502-3.
- Yu C.H., Shi L., Yao Z., Li D.Y., Majumdar A. Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube // Nano Lett. 2005. V. 5. P. 1842−1846.
- Lee J., Yoon D., Kim H., Lee S.W., Cheong H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy // Phys. Rev. B. 2011. V. 83. I. 8. P. 081419-1−081419-3.
- Park J., Prakash V. Phonon scattering and thermal conductivity of pillared graphene structures with carbon nanotube-graphene intramolecular junctions // J. App. Phys. 2014. V. 116. P. 014303-1−014303-12.
- Varshney V., Patnaik S.S., Roy A.K., Froudakis G., Farmer B.L. Modeling of thermal transport in pillared-graphene architectures // ACS Nano. 2010. V. 23. № 4. P. 1153−1161.
- Tristan-Lopez F., Morelos-Gomez A., Vega-Diaz S.M., García-Betancourt M.L., Perea-López N., Elías A.L., Muramatsu H., Cruz-Silva R., Tsuruoka S., Kim Y.A., Hayahsi T., Kaneko K., Endo M., Terrones M. Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water // ACS Nano. 2013. V. 7. I. 12. P. 10788−10798.
- Kim S.H., Song W., Jung M.W., Kang M.A., Kim K., Chang S.J., Lee S.S., Lim J., Hwang J., Myung S., An K.S. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors // Adv. Mater. 2014. V. 26. I. 25. P. 4247−4252.
- Tung T.T., Pham-Huu C., Janowska I., Kim T., Castro M., Feller J.F. Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications // Small. 2015. V. 1. I. 28. P. 3485−3493.
- Kholmanov I.N., Magnuson C.W., Piner R., Kim J.Y., Aliev A.E., Tan C., Kim T.Y., Zakhidov A.A., Sberveglieri G., Baughman R.H., Ruoff R.S. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films // Adv. Mater. 2015. V. 27. I. 19. P. 3053-1−3053-8.
- Lv R., Cruz-Silva E., Terrones M. Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more // ACS Nano. 2014. V. 8. I. 5. P. 4061-1−4061-8.
- Maarouf A.A., Kasry A., Chandra B., Martyna G.J. A graphene-carbon nanotube hybrid material for photovoltaic applications // Carbon. 2016. V. 102. P. 74−80.
- Alder B.J., Wainwright T.E. Studies in Molecular Dynamics. I. General Method // J. Chem. Phys., 1959. V. 31. I. 2. P. 459−466.
- Mitrofanov V.V., Slepchenkov M.M., Zhang G., Glukhova O.E. Hybrid carbon nanotube-graphene monolayer films: Regularities of structure, electronic and optical properties // Carbon. 2017. V. 115. P. 803−810.
- Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. V. 112. I. 6472. P. 760−767.
- Soumik B., Sayangdev N., Ishwar K.P. Molecular simulation of the carbon nanotube growth mode during catalytic synthesis // Appl. Phys. Lett. 2008. V. 92. P. 233121-1−233121-3.
- Zhao J., Wei N., Fan Z., Jiang J.W., Rabczuk T. The mechanical properties of three types of carbon allotropes // Nanotechnology. 2013. V. 24. P. 095702-1−095702-11.
- Kubo R., Yokota M. and Nakajima S. Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance // J. Phys. Soc. Japan. 1957. V. 12. P. 1203−1211.
- Long Y., Chen J., Liu Y.G., Nie F.D., Sun J.S. A direct method to calculate thermal conductivity and its application in solid HMX // J. Phys. Condens. Matter. 2010. V. 22. I. 18. P. 185404-1−185404-7.
- Muller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity // J. Chem. Phys., 1997. V. 106. P. 6082−6085.
- Tersoff J. New empirical approach for the structure and energy of covalent systems // Phys. Rev. B. 1988. V. 37. P. 6991−7000.
- Lindsay L., Broido D.A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene // Phys. Rev. B. 2010. V. 81. P. 205441-1−205441-6.
- Barako M.T., Roy-Panzer S., English T.S., Kodama T., Asheghi M., Kenny T.W., Goodson K.E. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites // ACS Appl. Mater. Interfaces. 2015. V. 7. I. 34. P. 19251−19259.
- Li D., Wu Y., Kim P., Shi L., Yang P. Thermal conductivity of individual silicon nanowires // Appl. Phys. Lett. 2003. V. 83. P. 2934−2936.