350 rub
Journal Radioengineering №9 for 2018 г.
Article in number:
Investigation of coaxial matched loads, based on multiphysical models in 0...50 GHz range
Type of article: scientific article
DOI: 10.18127/j00338486-201809-10
UDC: 621.372
Authors:

B.M. Kats – Ph.D.(Eng.), Senior Research Scientist, Head of Department, NIKA-Microwave, Ltd (Saratov) E-mail: brs19520@yandex.ru

V.P. Meschanov – Honored Scientist of RF, Dr.Sc.(Eng.), Professor, Director of NIKA-Microwave, Ltd (Saratov) E-mail: nika373@bk.ru

N.F. Popova – Ph.D.(Eng.), Senior Research Scientist, Head of Department, NIKA-Microwave, Ltd (Saratov) Ya.V. Turkin – Senior Research Scientist, NIKA-Microwave, Ltd (Saratov) E-mail: turkin.yaroslav@gmail.com

Abstract:

Matched microwave resistors with the different substrate materials have been investigated. Theoretical analysis of the resistor’s thermal properties is performed using a multyphysical model of thermal and electronic transport. Electromagnetic and heat transfer equations were solved simultaneously using finite element method. Distributions of the temperature and electromagnetic field in the volume of substrate within a frequency range 0…50 GHz have been presented. Thermal parameters of the microwave resistors with three different substrate materials have been analyzed theoretically using numerical computation results.

Pages: 47-54

 

References
  1. Ponchak G.E. et al. RF and DC power handling characterization of thin film resistors embedded on LCP // 58th IEEE Electronic Components and Technology Conference (ECTC). 2008. S. 713−717.
  2. Korzh I.A., Zima V.N., Evdokimov M.A. Moshhny’e plenochny’e rezistory’ na podlozhkax iz AlN i Al2O3 dlya VCh attenyuatorov bol’shoj moshhnosti // Trudy’ Mezhdunar. nauchno-texnich. konf. «RE’iS». 2011. S. 478.
  3. Korzh I.A., Kuzneczov A.N. Tonkie rezistivny’e plenki na osnove soedinenij tantala dlya izgotovleniya moshhny’x VCh-nagruzok i attenyuatorov // Texnika radiosvyazi. 2016. № 4. S. 69−76.
  4. Shmakov M., Parshin V. Gibridno-plenochny’e integral’ny’e mikrosxemy’: vy’bor materialov i chto neobxodimo uchity’vat’ pri konstruirovanii // Texnologii v e’lektronnoj promy’shlennosti. 2007. № 2. S. 64−70.
  5. Luchinin V., Tairov Yu. Karbid kremniya-almazopodobny’j material s upravlyaemy’mi nanostrukturno-zavisimy’mi svojstvami // Nanoindustriya. 2010. № 1. S. 36−41.
  6. Bejan A. Heat Transfer Handbook. John Wiley & Sons. 2003. 1470 p.
  7. Grigor’ev A.D. Metody’ vy’chislitel’noj e’lektrodinamiki. M.: FIZMATLIT. 2013. 432 s.
  8. Tretyakov S. Analytical Modeling in Applied Electromagnetics. London: Artech House. 2003. 269 p. 9.
  9. Salome – The Open Source Integration Platform for Numerical Simulation // OPEN CASCADE SAS.  URL = https://www.salome-platform.org/ (data obrashheniya 01.08.2018).
  10. MUMPS – a Multifrontal Massively Parallel sparse direct Solver // The National Institute of Electrical engineering.  URL = http://mumps.enseeiht.fr/ (data obrashheniya 01.08.2018).
Date of receipt: 17 августа 2018 г.