350 rub
Journal Radioengineering №9 for 2018 г.
Article in number:
Modeling of a sub-THz traveling wave tube with a converging sheet electron beam
Type of article: scientific article
DOI: 10.18127/j00338486-201809-02
UDC: 621.385.6
Authors:

A.A. Burtsev – Ph.D.(Eng.), Head of Laboratory, JSC «SPE «Almaz» (Saratov); Senior Research Scientist Saratov branch of Kotel'nikov IRE of RAS

E-mail: antbourtsew@gmail.com

A.V. Danilushkin – Engineer, JSC «SPE «Almaz» (Saratov)

E-mail: dan-aleksei2012@yandex.ru

I.A. Navrotsky – Research Scientist, JSC «SPE «Almaz» (Saratov)

E-mail: ingvarna@gmail.com

A.E. Ploskikh – Student, Saratov State University named after N.G. Chernyshevsky; Trainee-researcher, Saratov branch of Kotel'nikov IRE of RAS E-mail: andreyploskih@gmail.com

N.M. Ryskin – Dr.Sc.(Phys.-Math.), Professor, Head of Laboratory, Saratov branch of Kotel'nikov IRE of RAS; Professor Saratov State University named after N.G. Chernyshevsky E-mail: RyskinNM@info.sgu.ru

Abstract:

 In this paper, we present the results of study of an electron-optical system (EOS) with a converging sheet beam, and the results of performance calculation of a TWT with such an EOS. The EOS with a planar cathode forming a 50-μm-thickness beam with 10-fold compression in vertical direction is designed by using a method of synthesis. The results are verified by 3-D computer simulation by using Lorenz-3EM software package. Using the EOS with compression allows reduce of the focusing magnetic field in comparison with a straight-flow EOS immersed in the magnetic field, to reduce the cathode current density and the beam tunnel height, which leads to substantial increase of the Pierce coupling impedance. According to the calculations, at 100-mA beam current small-signal gain exceeds 30 dB in nearly 20-GHz frequency band. Maximal saturated power exceeds 80 W, and it is attained at nearly 0.1-W input power that is an order of magnitude less than for the straight-flow EOS.

Pages: 8-13
References
  1. Srivastava V. THz vacuum microelectronic devices // J. Physics: Conf. Series. 2008. V. 114. № 1. 012015.
  2. Booske J.H., Dobbs R.J., Joye C.D., Kory C.L., Neil G.R., Park G.S., Park J.H., Temkin R.J. Vacuum electronic high power terahertz sources // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 1. P. 54−75.
  3. Dhillon S.S., Vitiello M.S., Linfield E.H., Davies A.G., et al. The 2017 terahertz science and technology roadmap // J. Phys. D, Appl. Phys. 2017. V. 50. № 4. 043001.
  4. Baig A., Gamzina D., Kimura T., Atkinson J., et al. Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier // IEEE Trans. Electron Devices. 2017. V. 64. № 5. P. 2390−2397.
  5. Rozhnyov A.G., Ry’skin N.M., Karetnikova T.A., Torgashov G.V., Siniczy’n N.I., Shalaev P.D., Burczev A.A. Issledovanie xarakteristik zamedlyayushhej sistemy’ lampy’ begushhej volny’ millimetrovogo diapazona s lentochny’m e’lektronny’m puchkom // Izvestiya VUZov. Radiofizika. 2013. T. 56. № 8−9. S. 601−613.
  6. Karetnikova T.A., Rozhnyov A.G., Ry’skin N.M., Torgashov G.V., Torgashov I.G., Siniczy’n N.I. Voprosy’ razrabotki usilitelej i generatorov O-tipa subteragerczevogo diapazona chastot // Radiotexnika. 2014. № 10. S. 46−51.
  7. Ryskin N.M., Karetnikova T.A., Rozhnev A.G., Torgashov G.V., Bushuev N.A., Shalaev P.D. Development and modeling of a sheet-beam sub-THz traveling wave tube // Proceedings of 2015 IEEE International Vacuum Electronics Conference (IVEC 2015), Beijing. China. DOI: 10.1109/IVEC.2015.7223784.
  8. Karetnikova T.A., Rozhnyov A.G., Ry’skin N.M., Torgashov G.V., Siniczy’n N.I., Grigor’ev Yu.A., Burczev A.A., Shalaev P.D. Modelirovanie lampy’ begushhej volny’ subteragerczevogo diapazona s zamedlyayushhej sistemoj tipa sdvoennoj grebenki i lentochny’m e’lektronny’m puchkom // Radiotexnika i e’lektronika. 2016. T. 61. № 1. S. 54−60.
  9. Karetnikova T.A., Rozhnev A.G., Ryskin N.M., Fedotov A.E., Mishakin S.V., Ginzburg N.S. Gain analysis of a 0.2-THz traveling-wave tube with sheet electron beam and staggered grating slow wave structure // IEEE Trans. Electron Devices. 2018. V. 65. № 6. P. 2129−2134.
  10. Burczev A.A., Grigor’ev Yu.A., Danilushkin A.V., Navroczkij I.A., Pavlov A.A., Shumixin K.V. Osobennosti razrabotki e’lektronnoopticheskix sistem dlya impul’sny’x teragerczovy’x lamp begushhej volny’ (Obzor) // ZhTF. 2018. T. 88. № 3. S. 464−471.
  11. Nevskij P.V. Teoriya V.T. Ovcharova i primery’ ee ispol’zovaniya pri raschete e’lektronno-opticheskix sistem e’lektrovakuumny’x priborov // Obzory’ po e’lektronnoj texniki. Ser. 1. E’lektronika SVCh. 1989. № 15. 48 s.
  12. Gamayunov Yu.G., Patrusheva E.V., Grigor’ev Yu.A., Burczev A.A. Metod sinteza formirovaniya sxodyashhixsya lentochny’x e’lektronny’x puchkov // Radiotexnika. 2016. № 7. S. 38−40.
  13. Gamayunov Yu.G., Patrusheva E.V. Sintez sistem formirovaniya sxodyashhixsya lentochny’x e’lektronny’x puchkov pri chastichnoj magnitnoj e’kranirovke katoda // Radiotexnika i e’lektronika. 2017. T. 62. № 11. S. 1126−1132.
  14. Nguyen K.T., Pasour J.A., Antonsen T.M., Larsen P.B., Petillo J.J., Levush B. Intense sheet electron beam transport in a uniform solenoidal magnetic field // IEEE Trans. Electron Devices. 2009. V. 56. No. 5. P. 744−752.
  15. Ruan C.J., Wang S.Z., Han Y., Li Q.S., Yang X.D. Theoretical and experimental investigation on intense sheet electron beam transport with its diocotron instability in a uniform magnetic field // IEEE Trans. Electron Devices. 2014. V. 61. No. 6. P. 1643−1650.
  16. https://www.integratedsoft.com/Products/lorentz.aspx.
  17. Kacz A.M., Il’ina E.M., Man’kin I.A. Nelinejny’e yavleniya v SVCh priborax O-tipa s dlitel’ny’m vzaimodejstviem. M.: Sov. radio. 1975. 296 s.
Date of receipt: 17 августа 2018 г.