O.E. Glukhova – Dr.Sc.(Phys.-Math.), Professor, Head of Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky
E-mail: GlukhovaOE@info.sgu.ru
V.V. Mitrofanov – Post-graduate Student, Department of Radiotechnique and Electrodynamics,
Saratov State University named after N.G. Chernyshevsky
E-mail: ip.boyar@gmail.com
M.M. Slepchenkov – Ph.D.(Phys.-Math.), Associate Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky
E-mail: slepchenkovm@mail.ru
We have developed a universal method for constructing unit cells of composite nanostructures, called the «magnifying glass» method. Topological models of thermodynamically stable structures of a new carbon material, a hybrid graphene-nanotube film, are revealed using this method. This film is formed by two graphene monolayers with zigzag tubes which are located between graphene sheets and are covalently bonded to them. The mechanism of energetically favorable covalent bonding of tubes and graphene sheet is established for the first time. It is shown that thermodynamically stable topological models are composites with tubes (10,0), (12,0), (14,0), (16,0) and (18,0) at the intertubular distance of 9, 10, 11, 12 and 13 hexagons (formation enthalpy <−0.2 kcal/mol∙atom).
- Wang W., Ozkan M., Ozkan C.S. Ultrafast high energy supercapacitors based on pillared graphene nanostructures // J. Mater. Chem. A, 2016. V. 4. P. 3356−3361.
- Glukhova O.E., Kolesnikova A.S., Slepchenkov M.M., Shmygin D.S. Atomic structure of energetically stable carbon nanotubes/graphene composites // Phys. Solid State. 2015. V. 57. P. 1009−1013.
- Dang V.T., Nguyen D.D., Cao T.T., Le P.H., Tran D.L., Phan N.M., Nguyen V.C. Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films // Adv. Nat. Sci: Nanosci. Nanotechnol. 2016. V. 7. P. 033002.
- Liu Y., Wang F., Wang X., Wang X., Flahaut E., Liu X., Li Y., Wang X., Xu Y., Shi Y., Zhang R. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors // Nat. Commun. 2015. V. 6. P. 8589.
- Gan X., Lv R., Bai J., Zhang Z., Wei J., Huang Z.H., Zhu H., Kang F., Terrones M. Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors // 2D Mater. 2015. V. 2. P. 034003.
- Kholmanov I.N., Magnuson C.W., Piner R., Kim J.Y., Aliev A.E., Tan C., Kim T.Y., Zakhidov A.A., Sberveglieri G., Baughman R.H., Ruoff R.S. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films // Adv. Mater. 2015. V. 27. P. 3053−3059.
- Tristán-López F., Morelos-Gómez A., Vega-Díaz S.M., García-Betancourt M.L., Perea-López N., Elías A.L., Muramatsu H., Cruz-Silva R., Tsuruoka S., Kim Y.A., Hayahsi T., Kaneko K., Endo M., Terrones M. Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water // ACS Nano. 2013. V. 7(12). P. 10788−10798.
- Kim S.H., Song W., Jung M.W., Kang M.A., Kim K., Chang S.J., Lee S.S., Lim J., Hwang J., Myung S., An K.S. Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors // Adv. Mater. 2014. V. 26. P. 4247−4252.
- Maarouf A.A., Kasryc A., Chandrad B., Martynad G.J. A graphene–carbon nanotube hybrid material for photovoltaic applications // Carbon. 2016. V. 102. P. 74−80.
- Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J Chem. Phys. 2000. V. 112. P. 6472−6486.
- URL: http://nanokvazar.ru/ (data obrashheniya 18.03.2018).
- Gluxova O.E., Kolesnikova A.S., Savost'yanov G.V., Slepchenkov M.M. PO «KVAZAR» – platforma dlya prognosticheskogo modelirovaniya v oblasti nano- i biomediczinskix texnologij. Saratov: Izdatel'stvo «Saratovskij istochnik». 2015. 247 s.
- Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G. Phys. Rev. B. 1998. V. 58. 7260−7268.
- URL = http://www.dftbplus.org/ (data obrashheniya 12.02.2018).