350 rub
Journal Radioengineering №8 for 2018 г.
Article in number:
Distribution of space charge in a magnetized gas-discharge plasma bounded by plane dielectric walls
Type of article: scientific article
DOI: 10.18127/j00338486-201808-19
UDC: 519.711
Authors:

A.S. Bankovskiy – Ph.D.(Phys.-Math.), Associate Professor, Department «Electronic Instruments and Devices», Yuri Gagarin State Technical University of Saratov

A.A. Zakharov – Dr.Sc.(Eng.), Professor, Head of Department «Electronic Instruments and Devices», Yuri Gagarin State Technical University of Saratov

E-mail: zaharov@sstu.ru

A.A. Potapov – Undergraduate, Department «Electronic Instruments and Devices», Yuri Gagarin State Technical University of Saratov

E-mail: potapov_andrey13@mail.ru

Abstract:

The balance equation for the space charge caused in a magnetized plasma by the action of a magnetic field on the parameters of the motion of electrons and positive ions is obtained and analyzed. As a zeroth approximation, a homogeneous plasma with zero space charge is used. In contrast to the calculation results, which takes into account the diffusion of charged particles with zero space charge and leads to a homogeneous balance equation for the electron concentration, the balance equation for space charge obtained is an inhomogeneous differential equation, since the inhomogeneity factor associated with the magnitude of the magnetic field is taken into account. The analysis shows that the profile of its transverse distribution differs from a similar distribution profile of charged particles of a homogeneous plasma and is determined by the boundary conditions on dielectric walls, the parameters of a homogeneous magnetized plasma, and depends on the nature of the gas and its pressure.

Pages: 95-100
References
  1. Rajzer Yu.P. Fizika gazovogo razryada. M.: Nauka. 1992. 536 s.
  2. Medvedev A.E'. Perenos plazmy' v usloviyax protekayushhego toka // Izvestiya VUZov. Fizika. 2012. T. 55. № 4. S. 44−47.
  3. Taccogna F., Dilecce G. Non-equilibrium in low-temperature plasmas // The European Physical Journal D. 2016. V. 70. № 11. P. 37.
  4. Privalov V.E. Gazorazryadny'e lazery' v sudovy'x izmeritel'ny'x kompleksax. L.: Sudostroenie. 1977. 260 s.
  5. Golant V.E., Zhilinskij A.P., Saxarov I.E. Osnovy' fiziki plazmy'. SPb.: Lan'. 2011. 447 s.
  6. Gohain M., Karmakar P.K. Evolutionary Sheath Structure in Magnetized Collisionless Plasma with Electron Inertia // Plasma Physics Reports. 2017. V. 43. № 9. P. 957−968.
  7. Bankovskij A.S., Zaxarov A.A., Podshivalova A.A. Svojstva ogranichennoj nizkotemperaturnoj plazmy' v poperechnom magnitnom pole v sluchae odnorodnogo ambipolyarnogo polya // Izvestiya VUZov. Fizika. 2011. T. 54. № 4. S. 7−10.
  8. Bankovskij A.S., Zaxarov A.A., Ivanova A.A. E'lektrofizicheskie svojstva ploskoj gazorazryadnoj plazmy', ogranichennoj die'lektricheskimi stenkami // Radiotexnika. 2015. № 7. S. 48−53.
  9. Mixajlovskij A.B. E'lektromagnitny'e neustojchivosti neodnorodnoj plazmy'. M.: E'nergoatomizdat. 1991. 350 s.
Date of receipt: 24 мая 2018 г.