A.V. Ponomarev – Ph.D.(Eng.), Dr.Sc.Candidate, Associate Professor,
MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: cycloida@mail.ru
A.V. Bogoslovsky – Honored Scientist of RF, Dr.Sc.(Eng.), Professor,
Department of Mathematics, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: p-digim@mail.ru
I.V. Zhigulina – Ph.D.(Eng.), Associate Professor, Professor, Department of Mathematics,
MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh) E-mail: ira_zhigulina@mail.ru
The article is devoted to biologically similar methods for analyzing video information are considered. The methods are based on twozone structures. A new concept is introduced - the detectors field, which is a set of two-zone structures (detectors). The mechanism of the drift of the detectors field along the image is proposed and described. It is shown that the use of detectors field reduces the dimension of the processed image while preserving all its important components, which allows to significantly reduce the amount of information transferred to the next level of processing.
- Gonsales R., Vuds R. Czifrovaya obrabotka izobrazhenij. M.: Texnosfera. 2012. 1104 c.
- Chochia P.A. Nekotory’e algoritmy’ obnaruzheniya ob’‘ektov na osnove dvuxmasshtabnoj modeli izobrazheniya // Informaczionny’e proczessy’. 2014. T. 14. № 2. S. 117−136.
- Ajficher E’. Czifrovaya obrabotka signalov: prakticheskij podxod. M.: Vil’yams. 2016. 992 c.
- Luk’yanicza A.A., Shishkin A.G. Czifrovaya obrabotka videoizobrazhenij. M.: Aj-E’s-E’s Press. 2009. 511 s.
- Zinchenko L.A. Bionicheskie informaczionny’e sistemy’ i ix prakticheskie primeneniya / Pod. red. L.A. Zinchenko, V.M. Kurejchika, V.G. Red’ko. M.: Fizmatlit. 2011. 288 s.
- Dvorkovich V.P., Dvorkovich A.V. Czifrovy’e videoinformaczionny’e sistemy’ (teoriya i praktika). M.: Texnosfera. 2012. 1008 s.
- Kotczov V.A., Balter B.M., Egorov V.V. Novy’e vozmozhnosti korrelyaczionnogo analiza dlya sistem texnicheskogo zreniya // Materialy’ nauch.-texn. konf. «Texnicheskoe zrenie v sistemax upravleniya – 2017». M.: IKI RAN. 2017. S. 55−56.
- Potapov A.A. Novejshie metody’ obrabotki izobrazhenij / Pod red. A.A. Potapova. M.: Fizmatlit. 2008. 496 s.
- Szeliski R. Computer Vision: Algorithms and Applications. New York: Springer. 2010.
- Hubel D.H., Wiesel T.N., Receptive Fields, binocular interaction and functional architecture in the cat’svisual cortex // J. Physiol. London. 1962. 106 (1). P. 106−154.
- Hubel D.H., Wiesel T.N., Receptive fields and functional architecture in two nonstriate visual areas (18 and19) of the cat // J. Neurophysiol. 1965. 28 (2). P. 229−289.
- Xajkin S. Nejronny’e seti: polny’j kurs. Neural Networks: A Comprehensive Foundation. Izd. 2-e. M.: Vil’yams. 2006. 1104 s.
- Fukushima K., Miyake S., Takayuki I. Neocognitron: A neural network model for a mechanism of visual pattern recognition // IEEE Transaction on Systems, Man and Cybernetics SMC–13(5):826–34. 1983.
- Boahen K.A. A retinomorphic vision system // IEEE Micro. 1996. V. 16. № 5. P. 30−39.
- Boahen K.A., Andreou A.G., Mateo San. A contrast sensitive silicon retina with reciprocal synapses, Advances in Neural Information Processing Systems // CA: Morgan Kaufmann. 1992. V. 4. P. 764−772.
- Changizi M. Revolyucziya v zrenii: chto, kak i pochemu my’ vidim na samom dele: Per. s angl. A. Gopko. M.: Izdatel’stvo AST: CORPUS. 2015. 304 s.
- Shul’govskij V.V. Osnovy’ nejrofiziologii. M.: Aspekt Press. 2000. 277 s.
- Gel’mgol’cz G. O zrenii cheloveka. Novejshie uspexi teorii zreniya. M.: Librokom. 2011. 192 s.
- X’yubel D. Glaz, mozg, zrenie. M.: Mir. 2003. 240 s.
- X’yubel D, Torsten Vizel. Mozg i zritel’noe vospriyatie. M.: Institut komp’yuterny’x issledovanij. 2012. 840 s.
- Faugeras O.D. Digital color image processing within the framework of a human visual model // IEEE Trans. 1979. V. ASSP-27. № 4. P. 380−393.
- Redozubov A. Logika soznaniya: [E’lektronny’j resurs]. 2011. URL = http://www.aboutbrain.ru.
- Packer O., Dacey D. Receptive field structure of H1 horizontal cells in macaque monkey retina // Journal of Vision. 2002. 2(4). P. 279−292.
- Zemlyanoj I.S. Issledovanie metodov vy’deleniya i primeneniya oporny’x konturov s czel’yu raspoznavaniya licz // Materialy’ 58-j nauchnoj konf. s mezhdunar. uchastiem. Moskovskij fiziko-texnicheskij institut. 23−28 noyabrya 2015 g. M.: MFTI. 2015.
- Vinogradova L. Prosto Lena // Domashnij komp’yuter. 2002. № 11.
- LeCun Y., Boser B., Denker J.S., Henderson D., Howard R.E., Hubbard W., Jackel L.D. Back propagation Applied to Handwritten Zip Code Recognition // Neural Computation. 1989. 1(4). P. 541−551.