T.I. Kasatkina – Ph.D.(Phys.-Math.), Lecturer, Department of Bases of Radio Engineering and Electronics, Voronezh Institute of the Russian Federal Penitentiary Service
R.N. Andreyev – Ph.D.(Eng.), Head of Department of Bases of Radio Engineering and Electronics, Voronezh Institute of the Russian Federal Penitentiary Service
E-mail: am.iict.vrn@rambler.ru
A.B. Antilikatorov – Ph.D.(Eng.), Associate Professor, Department of Radio Equipment Engineering and Manufacturing, Voronezh State Technical University
E-mail: antilikatorov63@mail.ru
M.A. Romashchenko – Dr.Sc.(Eng.), Associate Professor, Department of Radio Equipment Engineering and Manufacturing, Voronezh State Technical University
In the article the UHF amplifier design on the basis of linear chains of high-temperature superconductor of S SQUIDs on a direct current, characterized by response high linearity from tension to electromagnetic signal magnetic component and by the increased strengthening coefficient, with a working frequencies 1−10 GGz range is developed and offered. To improve transformations linearity and working frequencies range it is offered to use the amplifiers containing considerable number of interconnected SQUIDs. To create basic element for an analog or digital signal strengthening it is considered to be used a consecutive chain of regularly located two-contact one-type SQUID s. The similar design can also be applied as magnetic field detector. The offered high-temperature superconductor amplifier can be used for signals strengthening in the gigahertz frequency range.
- Wong, R. Dunnegan, D. Gurta, et al. Nigh Rerformance, All Digital Rf Reseiver Tested at 7,5 Gigahertz // IEEE Military Sommunications Sonference (MILCOM). 2007. P. 1−5.
- O.A. Mukhanov, D. Kirichenko, I.V. Vernik, et al. Superconductor Digital-RF Reseiver Systems // IEISE Trans. Electron. 2008. V. E91–C. № 3. P. 306−317.
- Lezhnin I.V., Yugaj K.N. i dr. VTSP YBaCuO plenochny’j DC-SKVID // Vestnik Omskogo universiteta. 1997. № 1. S. 41−43.
- I.V. Vernik, D.E. Kirichenko, et al. Rrogress in the Develorment of Cryosooled Digital Channelizing RF Reseivers // IEEE Trans. Appl. Supercon. 2009. V. 19. P. 1016−1021.
- Pryor Roger W. Multiphysics modeling using COMSOL: a first principles approach // Jones and Bartlett Publishers. 2011. 871 p.
- Pat. 25442754 RF. SVCh-usilitel’ na osnove vy’sokotemperaturnogo SKVIDa s chety’r’mya dzhozefsonovskimi kontaktami / Solov’ev I.I., Kornev V.K., Klenov N.V., Sharafiev A.V., Kalabuxov A.S., Chuxarkin M.L., Snigirev O.V.; zayavitel’ i patentoobladatel’: Federal’noe gosudarstvennoe byudzhetnoe obrazovatel’noe uchrezhdenie vy’sshego professional’nogo obrazovaniya «Moskovskij gosudarstvenny’j universitet imeni M.V. Lomonosova (MGU); zayavl. 27.12.2014; opubl. 20.03.2015. Byul. № 8. MPK N 03 F 19/00, H 01 L 39/22.
- Dzhon Klark, Mixae’l’ Myuk, Mark-Oliver Andre’, Jost Ge’jl, Kristof Xajden. Mikropoloskovy’j usilitel’ na osnove PT-SKVIDa // Mikrovolnovaya sverxprovodimost’. 2001. V. 375. S. 473−504.
- Pat. 2051445 RF. Sverxprovodnikovy’j usilitel’ toka na osnove e’ffekta dzhozefsona / Nikulov A.V.; zayavitel’ i patentoobladatel’: Institut problem texnologii mikroe’lektroniki i osobo chisty’x materialov RAN; zayavl. 03.04.1992; opubl. 27.12.1995. Byul. № 18. MPK H 01 L 39/22.
- Parinov I.A. Mikrostruktura i svojstva vy’sokotemperaturny’x sverxprovodnikov. Rostov na Donu: Izd-vo Rostovskogo un-ta. 2004. T. 1. 416 s.
- Tokonesushhie lenty’ vtorogo pokoleniya na osnove vy’sokotemperaturny’x sverxprovodnikov: Per. s angl. (Red. per. A.R. Kaul’) / Pod red. A. Goyala. M.: Izd-vo LKI. 2009. 432 s.