Yu.E. Kuvayskova – Ph.D.(Eng.), Associate Professor, Department «Applied Mathematics and Informatics»,
Ulyanovsk State Technical University
E-mail: u.kuvaiskova@mail.ru
V.N. Klyachkin – Dr.Sc.(Eng.), Professor, Department «Applied Mathematics and Informatics»,
Ulyanovsk State Technical University
E-mail: v_kl@mail.ru
For ensuring reliable and safe functioning of objects technical diagnostics of their state is carried out, in particular, it is estimated, an object is serviceable or faulty. Various methods of machine learning on precedents can be applied to the solution of this task. In article for increase in accuracy of forecasting of technical state of an object, it is offered to combine results of methods of binary classification by means of the procedure of a bagging. The numerical research of assessment of serviceability of an object is conducted, and shown that use of bagging-technology allows to increase classification accuracy in comparison with basic methods.
- Witten I.H., Frank E. Data Mining: Practical Machine Learning Tools and Techniques. San Francisco: Morgan Kaufmann Publishers. 2005. 525 p.
- Klyachkin V.N., Kuvajskova Yu.E., Zhukov D.A. Ispol’zovanie agregirovanny’x klassifikatorov pri texnicheskoj diagnostike na baze mashinnogo obucheniya // Sb. trudov III Mezhdunar. konf. i molodezhnoj shkoly’ «Informaczionny’e texnologii i nanotexnologii (ITNT2017)». Samarskij naczional’ny’j issledovatel’skij universitet imeni akademika S.P. Koroleva. 2017. S. 1770−1773.
- Klyachkin V.N., Kuvajskova Yu.E., Alekseeva V.A. Statisticheskie metody’ analiza danny’x. M.: Finansy’ i statistika. 2016. 240 s.
- Boks Dzh., Dzhenkins G. Analiz vremenny’x ryadov. Prognoz i upravlenie. M.: Mir. 1974. 242 s.
- Vasil’ev K.K., Krasheninnikov V.R. Statisticheskij analiz posledovatel’nostej izobrazhenij. M.: Radiotexnika. 2017. 248 s.
- Zadeh L.A. Fuzzy Logic // Computational Complexity: Theory, Techniques and Applications / R.A. Meyers (eds). New York: Springer. 2012. P. 1177−1200.
- Kuvayskova Y.E. The Prediction Algorithm of the Technical State of an Object by Means of Fuzzy Logic Inference Models // Procedia Engineering. «3rdInternational Conference «Information Technology and Nanotechnology» (ITNT 2017)». 2017. S. 767−772.
- Kuvajskova Yu.E., Alyoshina A.A. Texnicheskaya diagnostika ob’‘ektov s ispol’zovaniem metodov nechetkoj logiki // Radiotexnika. 2017. № 6. S. 32−34.
- Kuvajskova Yu.E., Fedorova K.A., Zhukov D.A. Analiz stabil’nosti raboty’ texnicheskogo ob’‘ekta s primeneniem apparata nechetkoj logiki // Sovremenny’e problemy’ proektirovaniya, proizvodstva i e’kspluataczii radiotexnicheskix sistem. 2016. № 1 (10). S. 167−171.
- Klyachkin V.N., Karpunina I.N., Kuvajskova Yu.E., Xoreva A.S. Primenenie metodov mashinnogo obucheniya pri reshenii zadach texnicheskoj diagnostiki // Nauchny’j vestnik UVAU GA(I). 2016. T. 8. S. 158−161.
- Breiman L. Bagging Predictors // Machine Learning. 1996. V. 24 (2). P. 123−140.
- Shitikov V.K., Masticzkij S.E’. Klassifikacziya, regressiya i drugie algoritmy’ Data Mining s ispol’zovaniem R. 2017. 351 s. (e’lektronnaya kniga, URL = https://github.com/ranalytics/data-mining).
- Voronina V.V., Mixeev A.V., Yarushkina N.G., Svyatov K.V. Teoriya i praktika mashinnogo obucheniya. Ul’yanovsk: UlGTU. 2017. 290 s.