350 rub
Journal Radioengineering №6 for 2018 г.
Article in number:
Application of convolutional neural networks for thematic mapping of time sequences of satellite multispectral images
Type of article: scientific article
UDC: 528.8
Authors:

V.E. Dementiev – Ph.D.(Eng.), Associate Professor, 

Department «Telecommunications», Ulyanovsk State Technical University

E-mail: dve@ulntc.ru, vitawed@mail.ru

D.S. Kondratiev – Post-graduate Student, Department «Telecommunications», Ulyanovsk State Technical University E-mail: kondratev.dmitriy@gmail.com

A.G. Frankel – Post-graduate Student, Department «Telecommunications», Ulyanovsk State Technical University E-mail: j.skvoll@gmail.com

Abstract:

The work is devoted to solving the problem of thematic mapping of time sequences of multispectral images. The neural network procedure based on the modified UNET network is proposed to be used as the basis of the classification algorithm. In order to improve the processing quality of satellite material, it is proposed to use several reference results of classifications for the previous moments of time. The consistency of this approach is shown by the results of processing time sequences of multispectral images. A comparative study with alternative classifiers is performed.

Pages: 29-32
References
  1. Gonsales R., Vuds R. Czifrovaya obrabotka izobrazhenij. Izd. 3-e. M.: Texnosfera. 2012. 1104 s.
  2. Vasil’ev K.K., Krasheninnikov V.R. Statisticheskij analiz izobrazhenij. Ul’yanovsk: UlGTU. 2014. 214 s.
  3. Fursov V.A., Bibikov S.A., Bajda O.A. Tematicheskaya klassifikacziya giperspektral’ny’x izobrazhenij po pokazatelyu sopryazhennosti // Komp’yuternaya optika. 2014. T. 38. № 1. S. 154−158.
  4. Zimichev E.A., Kazanskij N.L., Serafimovich P.G. Prostranstvennaya klassifikacziya giperspektral’ny’x izobrazhenij s ispol’zovaniem metoda klasterizaczii k-means++ // Komp’yuternaya optika. 2014. T. 38. № 2. S. 281−286.
  5. Tarabalka Y., Benediktsson J.A., Chanussot J. Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques // IEEE Transactions on Geoscience and Remote Sensing. 2009. V. 47(8). P. 2973−2987.
  6. Dement’ev V.E., Kondrat’ev D.S. Metod tematicheskogo kartografirovaniya posledovatel’nostej sputnikovy’x izobrazhenij // Informaczionno-izmeritel’ny’e i upravlyayushhie sistemy’. 2017. T. 15. № 12. S. 49−53.
  7. Dstl Satellite Imagery Feature Detection. URL = https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection.
Date of receipt: 24 мая 2018 г.