350 rub
Journal Radioengineering №4 for 2018 г.
Article in number:
Comparative electrodynamical analysis and optimization of radially inhomogeneous cylindrical absorbing elements
Type of article: scientific article
UDC: 621.371.16
Authors:

Ya.I. Chizhevskaya – Student, Moscow Institute of Physics and Technology (State University)

E-mail: yana.chizhevskaya@phystech.edu

O.N. Smolnikova – Ph.D.(Eng.), Associate Professor, Moscow Aviation Institute (National Research University);  Head of Department, PJSC «Radiofizika» (Moscow)

E-mail: smon2012@mail.ru

S.P. Skobelev – Dr.Sc.(Phys.-Math.), Leading Research Scientist, PJSC «Radiofizika» (Moscow);  Associate Professor, Moscow Institute of Physics and Technology (State University) E-mail: s.p.skobelev@mail.ru

Abstract:

An absorbing element in the form of a two-layer dielectric cylinder with losses in the core having both constant and linear profiles, as well as a cylinder with losses both in the shell and in the core are considered. The cylinders are assumed to be excited by a field of an E-polarized plane wave. Solution of the problem of scattering and absorption is solved with using the hybrid projection method. It is shown that high absorption efficiency for the cylinder with lossless shell can be achieved only for relatively large values of the outer radius. The use of a shell with losses allows obtaining high absorption efficiency at relatively smaller values of the radius. The results obtained for the two-layer absorbing cylinders are compared to the results also obtained in the work for an absorber in the form of a lossy cylindrical Luneburg-Gutman lens providing even higher absorption efficiency.

Pages: 23-32
References
  1. Narimanov E.E., Kildishev A.V. Optical black hole: Broadband omnidirectional light absorber // Applied Physics Letters. 2009. V. 95. P. 041106.
  2. Cheng Q., Cui T.J., Jiang W.X., Cai B.G. An omnidirectional electromagnetic absorber made of metamaterials // New Journal of Physics. 2010. V. 12. P. 063006.
  3. Kildishev A.V., Prokopeva L.J., Narimanov E.E. Cylinder light concentrator and absorber: theoretical description // Optics Express. 2010. V. 18. № 16. P. 16646−16662.
  4. Lu W., Jin J.-F., Lin Z., Chen H. A simple design of an artificial electromagnetic black hole // Journal of Applied Physics. 2010. V. 108. P. 064517.
  5. Wang H.-W., Chen L.-W. A cylindrical optical black hole using graded index photonic crystals // Journal of Applied Physics. 2011. V. 109. P. 103104.
  6. Gabdullina A.R., Smol’nikova O.N., Skobelev S.P. Nekotory’e osobennosti e’lektromagnitnogo rasseyaniya na radial’no neodnorodny’x czilindrax s polozhitel’ny’m i otriczatel’ny’m pokazatelem prelomleniya // Radiotexnika. 2017. № 10. S. 18−29.
  7. Gutman A.S. Modified Luneberg lens // Journal of Applied Physics. 1954. V. 25. № 7. P. 855−859.
  8. Zajczev V.F., Polyanin F.D. Spravochnik po oby’knovenny’m differenczial’ny’m uravneniyam. M.: Fizmatlit. 2001.
  9. Skobelev S.P., Yaparova A.A. Gibridny’j proekczionny’j metod analiza volnovodny’x reshetok s vy’stupayushhimi die’lektricheskimi e’lementami. Dvumerny’e zadachi // Radiotexnika i e’lektronika. 2007. T. 52. № 3. S. 311−321.
  10. Balanis C.A. Advanced engineering electromagnetics. N.Y.: Wiley. 1989.
  11. Boren K., Xafmen D. Pogloshhenie i rasseyanie sveta maly’mi chasticzami. M.: Mir. 1986.
  12. Yanke E’., E’mde F., Lesh F. Speczial’ny’e funkczii. M.: Nauka. 1964. 13. Bohren C.F. How can a particle absorb more than the light incident on it? // Amer. J. Phys. 1983. V. 51. № 4. P. 323−327.
Date of receipt: 15 марта 2018 г.