350 rub
Journal Radioengineering №4 for 2018 г.
Article in number:
Scattering of H-polarized plane wave by inhomogeneous dielectric cylinder of arbitrary cross section. 1. Method of analysis
Type of article: scientific article
UDC: 621.371.16
Authors:

E.S. Nekrasova – Student, Moscow Institute of Physics and Technology (State University)

E-mail: liza050896kb@gmail.com

O.N. Smolnikova – Ph.D.(Eng.), Associate Professor, Moscow Aviation Institute (National Research University);  Head of Department, PJSC «Radiofizika» (Moscow)

E-mail: smon2012@mail.ru

S.P. Skobelev – Dr.Sc.(Phys.-Math.), Leading Research Scientist, PJSC «Radiofizika» (Moscow);  Associate Professor, Moscow Institute of Physics and Technology (State University) E-mail: s.p.skobelev@mail.ru

Abstract:

A 2D problem of H-polarized plane electromagnetic wave scattering by a dielectric cylinder consisting of a homogeneous core of circular cross-section and an inhomogeneous cover of arbitrary cross section is considered. A modification of the hybrid projection method is developed for its solution on the basis of projection matching of the fields on the boundaries of circular cylindrical regions introduced in the consideration, projection of the Helmholtz equation for inhomogeneous region on the Fourier harmonics, and application of the one-dimensional method of finite elements in projection form to the derived ordinary differential equations for reduction of the latter to an algebraic system with block-banded matrix. The approach described above is also generalized for the case when the core is a perfectly conducting cylinder.

Pages: 17-22
References
  1. Richmond J.H. Scattering by a dielectric cylinder of arbitrary cross section shape // IEEE Trans. Antennas Propagat. 1965. V. AP-13. № 3. P. 334−341.
  2. Richmond J.H. TE-wave scattering by a dielectric cylinder of arbitrary cross section shape // IEEE Trans. Antennas Propagat. 1966. V. AP-14. № 4. P. 460−464.
  3. Peterson A.F., Klock P.W. An improved MFIE formulation for TE-wave scattering from lossy, inhomogeneous dielectric cylinders // IEEE Trans. Antennas Propagat. 1988. V. 36. № 1. P. 45−49.
  4. Chang S., Mei K.K. Application of the unimoment method to electromagnetic scattering of dielectric cylinders // IEEE Trans. Antennas Propagat. 1976. V. 24. № 1. P. 35−42.
  5. Jin J., Liepa V.V. Application of hybrid finite element method to electromagnetic scattering from coated cylinders // IEEE Trans. Antennas Propagat. 1988. V. 36. № 1. P. 50−54.
  6. Peterson A.F., Castillo S.P. A frequency-domain differential equation formulation for electromagnetic scattering from inhomogeneous cylinders // IEEE Trans. Antennas Propagat. 1989. V. 37. № 5. P. 601−607.
  7. Jankovic D., LaBelle M., Chang D.C., Dunn J.M., Booton R.C. A hybrid method for the solution of scattering from inhomogeneous dielectric cylinders of arbitrary shape // IEEE Trans. Antennas Propagat. 1994. V. 42. № 9. P. 1215−222.
  8. Tosun H. Novel differential formulation of electromagnetic scattering by dielectric cylinders of arbitrary cross-section // Proc. Inst. Elect. Eng. Microw., Antennas Propag. 1994. V. 141. № 3. P. 189−195.
  9. Boyer P., Popov E., Neviere M., Tayeb G. Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section // J. Opt. Soc. Am. A. 2004. V. 21. № 11. P. 2146−2153.
  10. Nekrasova E.S., Skobelev S.P. Modifikacziya gibridnogo proekczionnogo metoda dlya e’lektrodinamicheskogo analiza neodnorodnogo die’lektricheskogo czilindra proizvol’nogo poperechnogo secheniya // Radiotexnika. 2017. № 10. S. 35−43.
  11. Skobelev S.P., Yaparova A.A. Gibridny’j proekczionny’j metod analiza volnovodny’x reshetok s vy’stupayushhimi die’lektricheskimi e’lementami. Dvumerny’e zadachi // Radiotexnika i e’lektronika. 2007. T. 52. № 3. S. 311−321. 12. Balanis C.A. Advanced engineering electromagnetics. N.Y.: Wiley. 1989.
Date of receipt: 15 марта 2018 г.