350 rub
Journal Radioengineering №3 for 2018 г.
Article in number:
Signal processing in the distributed temperature sensors by Raman backscatter: Review of new
Type of article: scientific article
UDC: 621.391.63
Authors:

O.V. Stukach – Dr.Sc.(Eng.), Associate Professor, Professor, ISHITR department, 

National Research Tomsk Polytechnic University

E-mail: tomsk@ieee.org

I.V. Sychev – Director, LTD «KIPLAIN» (Novosibirsk)

E-mail: hr@kipline.ru

Abstract:

Measurement of temperature and small movements by the optical methods has been increasingly used in systems of monitoring of various objects and materials due some advantages in comparison with electromechanical methods. Despite relatively high cost of the measuring equipment, the fiber-optical systems find new commercial applications. At the same time there are many unresolved problems in design of the distributed temperature sensors that hinder accuracy of measurements and sensitivity of the equipment. In the paper a review of hardware and software methods of increase of the DTS metrological characteristics is proposed. The basic attention is given to digital signal processing as a most perspective way for design. Results of experimental researches were considered. As a matter of DTS experience the recommendations to designers are given.

Pages: 86-92
References
  1. A. Ukil, H. Braendle, P. Krippner. Distributed Temperature Sensing: Review of Technology and Applications // IEEE Sensors Journal. May 2012. V. 12. № 5. P. 885−892. DOI: 10.1109/JSEN.2011.2162060. http://ieeexplore.ieee.org/document/5955066/.
  2. Gary Allwood, Graham Wild, Steven Hinckley. Optical Fiber Sensors in Physical Intrusion Detection Systems: A Review // IEEE Sensors Journal. July 2016. V. 16. № 14. P. 5497−5509. DOI 10.1109/JSEN.2016.2535465.
  3. Chung Lee, Kwang Suh, Tommy Landry. The Implementation of Self Calibration Techniques in Raman Backscatter based Fiber Optic Distributed Temperature System (DTS) Technology / IEEE PES Transmission and Distribution Conference and Exposition. Chicago (USA). 21−24 April 2008.
  4. Zrelli Amira, Bouyahi Mohamed, Ezzedine Tahar. Monitoring of temperature in distributed optical sensor: Raman and Brillouin spectrum // Optik. 2016. V. 127. P. 4162−4166. http://dx.doi.org/10.1016/j.ijleo.2016.01.073.
  5. Arup Lal Chakraborty, Rakesh Kumar Sharma, Manoj Kumar Saxena, Sanjay Kher. Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor // Optics Communications. 2007. V. 274. P. 396−402.
  6. D. Di Francesca, S. Girard, I. Planes, A. Cebollada, G. Li Vecchi, A. Alessi, I. Reghioua, C. Cangialosi, A. Ladaci, S. Rizzolo, V. Lecoeuche, A. Boukenter, A. Champavere, Y. Ouerdane. Radiation Hardened Architecture of a Single-Ended Raman-Based Distributed Temperature Sensor // IEEE Transactions on Nuclear Science. January 2017. V. 64. № 1. P. 54−60.
  7. Gabriele Bolognini, Arthur Hartog. Raman-based fibre sensors: Trends and applications // Optical Fiber Technology. 2013. V. 19. P. 678−688.
  8. Thiago V.N. Coelho, M.J. Pontes, Joel P. Carvalho, J.L. Santos, A. Guerreiro. A remote long-period grating sensor with electrical interrogation assisted by Raman amplification // Optics & LaserTechnology. 2013. V. 47. P. 107−113. http://dx.doi.org/10.1016/j.optlastec.2012.08.042.
  9. Joao Paulo Bazzo, Daniel R. Pipa, Felipe Mezzadri, Erlon Vagner da Silva, Cicero Martelli, Jean Carlos, Cardozo da Silva. Superresolution algorithm applied in thermal imaging of hydroelectric generators stator using hybrid sensing with DTS and FBG // Microwave and Optoelectronics Conference (IMOC). 2015. Porto de Galinhas (Brazil). http://ieeexplore.ieee.org/document/7369058/.
  10. Ismail Laarossi, Ruben Ruiz-Lombera, Maria Angeles Quintela, Jesus Mirapeix, Domingo Lima, David Solana, Jose-Miguel Lopez-Higuera. Ultrahigh Temperature Raman-Based Distributed Optical Fiber Sensor With Gold-Coated Fiber // IEEE Journal of Selected Topics in Quantum Electronics. March-April 2017. V. 23. № 2. DOI: 10.1109/JSTQE.2016.2633821. http://ieeexplore.ieee.org/document/7763829/.
  11. Manoj Kumar Saxena, S.D.V.S.J. Raju, R. Arya, S.V.G. Ravindranath, S. Kher, S.M. Oak. Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals // Measurement. 2014. V. 47. P. 345−355.
  12. Manoj Kumar Saxena, S.D.V.S.J. Raju, R. Arya, R.B. Pachori, S.V.G. Ravindranath, S. Kher, S.M. Oak. Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals // Optics & Laser Technology. 2015. V. 65. P. 14−24.
  13. B.N. Sun, J. Chang, J. Lian, Z.L. Wang, G.P. Lv, X.Z. Liu, W.J. Wang, S. Zhou, W. Wei, S. Jiang, Y.N. Liu, S. Luo, X.H. Liu, Z. Liu, S.S. Zhang. Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact // Optics Communications. 2013. V. 306. P. 117−120. http://dx.doi.org/10.1016/j.optcom.2013.05.049.
  14. Z.L. Wang, J. Chang, S.S. Zhang, S. Luo, C.W. Jia, S. Jiang, B.N. Sun, Y.N. Liu, W. Wei, X.H. Liu, G.P. Lv. The demodulation methods for eliminating the impact of the Rayleighnoise in the Raman distributed temperature sensors // Optik. 2015. V. 126. P. 270−273.
  15. Z.L. Wang, S.S. Zhang, J. Chang, G.P. Lv, W.J. Wang, S. Jiang, X.Z. Liu, X.H. Liu, S. Luo, Y.N. Liu. Adaptive data acquisition algorithm in Raman distributedtemperature measurement system // Optik. 2014. V. 125. P. 1821−1824.
  16. Namkyoo Park, Jeonghwan Lee, Jonghan Park, Jae Gwang Shim, Hosung Yoon, Jin Hee Kim, Kyoungmin Kim, Jae-Oh Byun, Gabriele Bolognini, Duckey Lee, Fabrizio Di Pasquale. Coded optical time domain reflectometry: principle and applications // Proc. of SPIE. 2007. V. 6781. P. 678129. DOI: 10.1117/12.746977.
  17. Duckey Lee, Hosung Yoon, Pilhan Kim, Jonghan Park, Namkyoo Park. Optimization of SNR Improvement in the Noncoherent OTDR Based on Simplex Codes // Journal of Lightwave Technology. January 2006. V. 24. № 1. P. 322−328.
  18. Jogo Paulo Bazzo, Daniel Rodrigues Pipa, Cicero Martelli, Erlon Vagner da Silva, Jean Carlos Cardozo da Silva. Improving Spatial Resolution of Raman DTS Using Total Variation Deconvolution // IEEE Sensors Journal. DOI: 10.1109/JSEN.2016.2539279.
  19. Joao Batista Rosolem, Fabio Renato Bassan, Daiane Eliene de Freitas, Felipe Cezar Salgado. Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code // IEEE Sensors Journal. June 2017. V. 17. № 11. P. 3346−3353.
Date of receipt: 18 января 2018 г.