350 rub
Journal Radioengineering №3 for 2018 г.
Article in number:
Modern methods of increasing the speed of operational amplifiers for systems on a chip
Type of article: scientific article
UDC: 621.375.9
Authors:

A.V. Bugakova – Post-graduate Student, Department «Information Systems and Radio Engineering»,  Don State Technical University (Rostov-on-Don)

E-mail: annabugakova.1992@mail.ru

D.Yu. Denisenko – Post-graduate Student, Department «Information Systems and Radio Engineering»,  Don State Technical University (Rostov-on-Don)

E-mail: d.u.ivanova@gmail.com

E.V. Ovsepyan – Post-graduate Student, Department «Information Systems and Radio Engineering»,  Don State Technical University (Rostov-on-Don)

E-mail: ovsepyan.elenka@bk.ru

N.N. Prokopenko – Dr.Sc.(Eng.), Professor, Head of Department «Information Systems and Radio Engineering», Don State Technical University (Rostov-on-Don)

E-mail: prokopenko@sssu.ru

Abstract:

Features of the main methods for increasing the maximum slew rate of the output voltage (SR) of microelectronic operational amplifiers (Op-Amps) in linear and nonlinear modes are considered. It is shown that for base technological processes, the frequency of the single gain of the Op-Amp and the voltage of limiting the transmission characteristic of the capacitance capacitor driver (DCc) are two dominant and practically independent from each other factors that determine SR the many circuit-technical solutions. A comparative analysis of the SR Op-Amps on bipolar and field transistors is carried out under single-pole frequency correction. The DCc classification according to the types of nonlinearity of the pass characteristic is presented. Recommendations are formulated on the design of IP-modules of high-speed Op-Amps for systems on a chip, including working in the low temperature range and exposure to radiation.

Pages: 80-85
References
  1. Babayan R.R., Morozov V.P. Analogovy’e integral’ny’e sxemy’ – apparatnaya podderzhka obrabotki neprery’vny’x signalov // Datchiki i sistemy’. 2015. № 3. S. 51−62.
  2. Babayan R.R., Morozov V.P. Ustrojstva analogovoj obrabotki signalov v mikrokontrollerny’x sistemax // Datchiki i sistemy’. 2014. № 3(178). S. 47−51.
  3. Ivanov V.V., Filanovsky I.M. Operational Amplifier Speed and Accuracy Improvement // Kluwer Academic Publishers. Boston. Ed. 1st. 2004. 194 p. DOI: 10.1007/b105872.
  4. Anisimov V.I., Kapitonov M.V., Prokopenko N.N., Sokolov Yu.M. Operaczionny’e usiliteli s neposredstvennoj svyaz’yu kaskadov: monografiya // L.: «E’nergiya». 1979. 148 s.
  5. Polonnikov D.E. Operaczionny’e usiliteli: princzipy’ postroeniya, teoriya, sxemotexnika. M.: E’nergoatomizdat. 1983. 216 s.
  6. Prokopenko N.N. Nelinejnaya aktivnaya korrekcziya v preczizionny’x analogovy’x mikrosxemax (monografiya) // Rostov-na-Donu: Izdvo Severo-Kavkazskogo nauchnogo czentra vy’sshej shkoly’. 2000. 222 c.
  7. Prokopenko N.N., Budyakov A.S. Arxitektura i sxemotexnika by’strodejstvuyushhix operaczionny’x usilitelej // Shaxty’: YuRGUE’S. 2006. 232 s.
  8. Prokopenko N.N., Pakhomov I.V., Bugakova A.V., Butyrlagin N.V. The method of speeding of the operational amplifiers based on the folded cascade // IEEE EWDTS. Yerevan (Armenia). 2016. P. 1−4.
  9. Patent US № 7342450. Slew rate enhancement circuitry for folded cascode amplifier / Jones Mark A; Appl. 11/401,492; Filed: 11.04.2006; Date of patent: 11.03.2008.
  10. Rezaei M., Zhian-Tabasy E., Ashtiani S.J. Slew rate enhancement method for folded-cascode amplifiers // Electronics Letters. 2008.V. 44. № 21. P. 1226−1228. DOI: 10.1049/el:20082200.
  11. Patent US № 8604878. Folded cascode amplifier with an enhanced slew rate / Lin Po-Chuan; Appl. 13/474,082; Filed: 17.05.2012; Date of patent: 10.12.2013.
  12. Patent US № 7176760. CMOS class AB folded cascode operational amplifier for high-speed applications / Jones Mark A; Appl. 11/096,321; Filed: 31.03.2005; Date of patent: 13.02.2007.
  13. Huang B., Chen D.A. Simple Slew Rate Enhancement Technique Wiflnmproved Linearity And Preserved Small Signal Performance // 57th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). 2014. P. 270−273.
  14. Nizza N., et al. A current feedback adaptive biasing method for class-AB OTA cells // Research in Microelectronics and Electronics. 2005. V. 2. P. 186−189. DOI: 10.1109/RME.2005.1542968.
  15. Thanachayanont A., Chaloenlarp W. Low-voltage, rail-to-rail, Gm-enhanced pseudo-differential class-AB OTA // 47th IEEE Midwest Symposium on Circuits and Systems (MWSCAS). 2004. V. l. P. 53−56. DOI: 10.1109/MWSCAS.2004.1353895.
  16. Carvajal R.G., et al. Low-power low-voltage differential class-AB OTAs for SC circuits // Electronics Letters. 2002. V. 38. № 22.
    1. 1304−1305. DOI: 10.1049/el:20020958.
  17. Carvajal R.G., et al. New low-power low-voltage differential class-AB OTA for SC circuits // International Symposium on Circuits and Systems (ISCAS). 2003. V. 1. P. 589−592. DOI: 10.1109/ISCAS.2003.1205632.
  18. Giustolisi G., Palumbo G. A novel 1-V class-AB transconductor for improving speed performance in SC applications // International Symposium on Circuits and Systems (ISCAS). 2003. Vol. l. P. 153−156.
  19. Ramirez-Angulo J., et al. A new class AB differential input stage for implementation of low- voltage high slew rate op amps and linear transconductors // IEEE International Symposium on Circuits and Systems (ISCAS). 2001. V. 1. P. 671−674. DOI: 10.1109/ISCAS.2001.921945.
  20. Sen S., Bosco L. A class-AB high-speed low-power operational amplifier in BiMOS technology // IEEE Journal of Solid-State Circuits. 1996. V. 31. № 9. P. 1325−1330. DOI: 10.1109/4.535418.
  21. Pakhomov I.V., Butyrlagin N.V. Micropower high-speed CMOS operational amplifier with the circuit of nonlinear correction of the input stage // International Siberian Conference on Control and Communications (SIBCON). Omsk (Russia). 2015. P. 1−6.
  22. Patent US № 6710654. Bipolar class AB folded cascode operational amplifier for high-speed applications / Parkhurst Ch., Acosta J.; Appl. 09/999,475; Filed: 15.11.2001; Date of patent: 23.03.2004.
  23. Patent US № 6262633. High output current operational amplifier output stage / Close J.P.; Appl. 09/560,305; Filed: 27.04.2000; Date of patent: 17.07.2001.
  24. Patent US № 5374897. Balanced, high-speed differential input stage for Op-amps / Moraveji F.; Appl. 141,794; Filed: 21.10.1993; Date of patent: 20.12.1994.
  25. Harvey B. Selecting video op amps // EDN MOMENT. 26 June 2008. URL: https://www.edn.com/design/analog/4325660/Selecting- videoop-amps (dostup svobodny’j).
  26. Huang B., Chen D. A simple slew rate enhancement technique with improved linearity and preserved small signal performance // IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX. 2014. P. 270−273. DOI: 10.1109/MWSCAS.2014.6908404.
  27. Filho S.N., et al. New CMOS OTA for fully integrated continuous-time circuit applications // Electronics Letters. 1989. V. 25. № 24.
    1. 1674−1675. DOI: 10.1049/el:19891122.
  28. Patent US № 6822505. Mobility compensation in MOS integrated circuits / Palaskas G., Pavan Sh.Y.; Appl. 09/472,702; Filed: 27.12.1999; Date of patent: 23.11.2004.
  29. Patent US № 6882185. Exponential current generator and method / Walker B.C., Gazzerro P.C.; Appl. 09/109,504; Filed: 2.07.1998; Date of patent: 19.04.2005.
  30. Patent US № 4335358. Class «B» type amplifier / Hoeft W.H.; Appl. 06/113928; Filed: 06.15.1982; Date of patent: 01.21.1980.
  31. Prokopenko N.N., Gajduk A.R., Bugakova A.V. Perexodny’e proczessy’ v operaczionnom usilitele s e’ksponenczial’noj proxodnoj xarakteristikoj drajvera korrektiruyushhego kondensatora // Radiotexnika. 2017. № 10. S. 149−154.
  32. Prokopenko N.N., Bugakova A.V., Gaiduk A.R. Research of Operational Amplifiers with Nonlinear Drivers of Correction Capacity // IEEE EWDTS. Novi Sad (Serbia). 2017. P. 637−640.
  33. Krithivasan R., et al. A High-Slew Rate SiGe BiCMOS Operational Amplifier for Operation Down to Deep Cryogenic Temperatmes // IEEE Bipolar/BiCMOS Circuits and Technology Meeting. 2006. P. 1−4. DOI: 10.1109/BIPOL.2006.311170.
  34. Gorlov M., Emel’yanov A., Plebanovich V., Moskalev V. Konstruktivno-texnologicheskie osobennosti proektirovaniya radiaczionno-stojkix integral’ny’x sxem operaczionny’x usilitelej // Komponenty’ i texnologii. 2007. № 67. S. 158−159.
  35. Prokopenko N.N., Butyrlagin N.V., Bugakova A.V., Ignashin A.A. Method for Speeding the Micropower CMOS Operational Amplifiers with Dual-Input-Stages // 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Batumi (Georgia). 2017.
  36. Dvornikov O.V., Dziatlau V.L., Prokopenko N.N., Petrosiants K.O., Kozhukhov N.V., Tchekhovski V.A. The Accounting of the Simultaneous Exposure of the Low Temperatures and the Penetrating Radiation at the Circuit Simulation of the BiJFET Analog Interfaces of the Sensors // International Siberian Conference on Control and Communications (SIBCON). Astana. 29−30 June 2017. DOI: 10.1109/SIBCON.2017.7998507.
Date of receipt: 18 января 2018 г.