350 rub
Journal Radioengineering №12 for 2018 г.
Article in number:
Optimal pulses and M-BCJR demodulation algorithm to outperform the OFDM spectral efficiency
Type of article: scientific article
DOI: 10.18127/j00338486-201812-12
UDC: 621.396
Authors:

Nguyen Van Phe – Post-graduate Student, Higher School of Applied Physics and Space Technologies  of Peter The Great St. Petersburg Polytechnic University

E-mail: nvphe1905@gmail.com

A.L. Gelgor – Ph.D.(Eng.), Associate Professor, Higher School of Applied Physics and Space Technologies  of Peter The Great St. Petersburg Polytechnic University

E-mail: а_пelgor@mail.ru

Nguyen Tan Hoang Phuoc – Post-graduate Student, Higher School of Applied Physics and Space Technologies  of Peter The Great St. Petersburg Polytechnic University E-mail: hoangphuoc1704@yahoo.com

Abstract:

In this work, we compared spectral efficiency between reputed SEFDM signals, and recently proposed RRC-SEFDM and PR-SEFDM signals, all of them are different types of the signals with non-orthogonal frequency division multiplexing. All signals were modulated with QPSK and 16-QAM signal constellations. Demodulation was performed by suboptimal algorithm M-BCJR with M = 8 paths survived at each step. For PR-SEFDM signals construction we used optimal spectral pulses with L = 12 taps. The simulation results were shown that, at first, the maximum gain in spectral efficiency is achieved only with simultaneous introducing intersymbol interference and increasing size of signal constellation. At second, PR-SEFDM signals with optimal spectral pulses provide a significant gain with respect to SEFDM signals and RRC-SEFDM signals at fixed energy consumptions and fixed complexity of the demodulation algorithm. In addition, we made comparison of PR-SEFDM and OFDM signals spectral efficiency. In this case, PR-SEFDM signals provide up to 27% gain in spectral efficiency for QPSK and 16-QAM signal constellations with additionally expenses up to 0.6 and 1.3 dB respectively.

Pages: 95-102
References
  1. Mazo J.E. Faster-than-Nyquist signaling // Bell System Technical Journal. V. 54. № 8. P. 1451−1462. 1975.
  2. Rodrigues M., Darwazeh I. A spectrally efficient frequency division multiplexing based communications system // Proc. 8th Int. OFDM Workshop, Hamburg. 2003. P. 48−49.
  3. Izzat Darwazeh, Hedaia Ghannam, Tongyang Xu. The First 15 Years of SEFDM: A Brief Survey // 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). 2018. P. 1−7.
  4. Michailow N., Matthe M., Gaspar I., Caldevilla A., Mendes L., Festag A., Fettweis G. Generalized frequency division multi-plexing for 5th generation cellular networks // IEEE Transactions on Communications. September 2014. V. 62. № 9. P. 3045−3061.
  5. Schellmann M., Zhao Z., Lin H., Siohan P., Rajatheva N., Luecken V., Ishaque A. FBMC-based air interface for 5G mobile: Challenges and proposed solutions // 9th International Conference on CROWNCOM. June 2014. P. 102−107.
  6. Vakilian V., Wild T., Schaich F., S. Ten Brink, J.-F. Frigon. Universal-filtered multi-carrier technique for wireless systems beyond LTE // IEEE Globecom Workshops (GC Wkshps). December 2013. P. 223−228.
  7. Zavjalov S., Volvenko S., Makarov S. A Method for Increasing the Spectral and Energy Efficiency SEFDM Signals // IEEE Communications Letters. 2016. V. 20. № 12. P. 2382−2385.
  8. Vasyliev D., Fadeev D., Rashich A. Joint use of SEFDM-signals and FEC schemes // Proceedings 16th International Conference, NEW2AN and 9th Conference (ruSMART). 2016. St. Petersburg (Russia). 26−28 September 2016. P. 604−611.
  9. Gel'gor A.L., Gorlov A.I., Nguen Van Fe. Povy'shenie e'ffektivnosti SEFDM putem zameny' spektral'ny'x SINC-impul'sov na RRCimpul'sy' // Radiotexnika. 2016. № 12. S. 105−111.
  10. Gel'gor A.L., Gorlov A.I., Nguen Van Fe. Povy'shenie spektral'noj i e'nergeticheskoj e'ffektivnosti signalov SEFDM putem ispol'zovaniya optimal'ny'x impul'sov v kachestve formy' spektrov podnesushhix // Radiotexnika. 2018. № 1. S. 49−56.
  11. Franz V., Anderson J.B. Concatenated Decoding with a Reduced-Search BCJR Algorithm // IEEE Journals on Select. Area. Commun. 1998. V. 16. № 2. P. 186−195.
  12. Bahl L., Cocke J., Jelinek F., Raviv J. Optimal decoding of linear codes for minimizing symbol error rate // IEEE Trans. Inf. Theory. 1974. V. 20. № 2. P. 284−287.
  13. Forney G.D. The Viterbi Algorithm // Proc. of the IEEE. 1973. V. 61. № 3. P. 268−278.
  14. Anderson J.B. Limited search trellis decoding of convolutional codes // IEEE Trans. Inform. Theory. September 1989. V. 35. P. 944−955.
  15. Fincke U., Pohst M. Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Complexity Analysis // Mathematics of Computation. 1985. V. 44. № 170. P. 463−471.
  16. Nguen Van Fe, Gorlov A.I., Gel'gor A.L. Dostizhenie maksimal'noj spektral'noj e'ffektivnosti putem odnovremennogo uvelicheniya razmera signal'nogo sozvezdiya i vvedeniya upravlyaemoj MSI // Radiotexnika. 2018. № 1. S. 42−48.
  17. Said, Anderson J.B. Bandwidth-efficient coded modulation with optimized linear partial-response signals // IEEE Trans. Inform. Theory. 1998. V. 44. № 2. P. 701−713.
Date of receipt: 9 ноября 2018 г.