350 rub
Journal Radioengineering №12 for 2018 г.
Article in number:
A radiointerferometer model based on RT-13 radiotelescopes receiving and recording equipment for the correlation response parameters determination
Type of article: scientific article
DOI: 10.18127/j00338486-201812-03
UDC: 520.274:520.272.5:621.391.822
Authors:

Yu.V. Vekshin – Master, Junior Research Scientist, Institute of Applied Astronomy RAS (Saint Petersburg) E-mail: yv.vekshin@iaaras.ru

V.O. Ken – Junior Research Scientist, Institute of Applied Astronomy RAS (Saint Petersburg) E-mail: ken@iaaras.ru

E.Yu. Khvostov – Research Scientist, Institute of Applied Astronomy RAS (Saint Petersburg) E-mail: hey@iaaras.ru

A.P. Lavrov – Dr.Sc.(Phys.-Math.), Senior Research Scientist, Professor, Higher School of Applied Physics and Space Technologies of Peter The Great St. Petersburg Polytechnic University E-mail: lavrov_ap@spbstu.ru

Abstract:

The two element very long baseline radiointerferometer based on the RT-13 radio telescopes of the Russian network «Quasar» is implemented for the Universal Time determination. In order to determine the instrumental errors of the receiving and recording equipment of the RT-13, which affect the accuracy of the Universal Time corrections, the laboratory model of a radio interferometer with zero-baseline was created at Institute of Applied Astronomy of the Russian Academy of Sciences. The model consists of two tri-band (S, X, Ka) heterodyne type receivers, broadband (512 MHz) data acquisition system (as back-end unit) and software RASFX correlator. The results of receiver delay stability measured by R&S vector network analyzer, data acquisition system, and the radiointerferometer model total delay stability, calculated using the correlator’s responses, are shown in this paper.

Pages: 21-28
References
  1. Ipatov A.V. A new-generation interferometer for fundamental and applied research // Physics-Uspekhi. 2013. V. 56. № 7. P. 729−737.
  2. Finkel’shtejn A.M., Ipatov A.V., Kajdanovskij M.N., Kol’czov N.E., Korkin E’.I., Malkin Z.M., Raximov I.A., Sal’nikov A.I., Smolenczev S.G.Radiointerferometricheskaya set’ «Kvazar-KVO» - bazovaya sistema fundamental’nogo koordinatno-vremennogo obespecheniya // Trudy’ IPA RAN. 2005. № 13. S. 104−138.
  3. Surkis I.F., Zimovsky V.F., Ken V.O., Kurdubova Ya.L., Mishin V.Yu., Mishina N.A., Shantyr V.A. A Radio Interferometric Correlator Based on Graphics-Processing Units // Instruments and Experimental Techniques. 2018. V. 61. № 6. P. 772−779
  4. Chernov V., Evstigneev A., Evstigneeva O., Ivanov D., Ipatov A., Ipatova I., Khvostov E., Lavrov A., Mardyshkin V., Pozdnyakov I., Vekshin Y., Zotov M. The S/X/Ka Receiving System for Radio Telescope RT-13 of the «Quasar» VLBI Network // Trudy’ IPA RAN. 2017. № 41. S. 79−84.
  5. Kol’czov N.E., Marshalov D.A., Nosov E.V., Fedotov L.V. Czifrovaya sistema preobrazovaniya shirokopolosny’x signalov dlya astronomicheskix radiointerferometrov // Izvestiya VUZov Rossii. Radioe’lektronika. 2014. № 1. S. 34−39.
  6. Finkel’shtejn A.M., Gubanov V.S., Fridman P.A. Vvedenie v radioastrometriyu. M.: Nauka. 1983. 279 s.
  7. Bezrukov I.A., Sal’nikov A.I., Yakovlev V.A., Vy’legzhanin A.V. Sistema buferizaczii i peredachi danny’x novogo pokoleniya // Trudy’ IPA RAN. 2015. № 32. S. 3−9.
  8. Tompson A.R., Moran Dzh.M., Svenson Dzh.U. Interferometriya i sintez v radioastronomii. M.: Fizmatlit. 2003. 624 s.
  9. R&S ZVA-K9: izmerenie gruppovogo vremeni zaderzhki bez dostupa k geterodinu. https://www.rohde-schwarz.com/ru/applications/r-s-zva-k9-application-card_56279-40196.html.
  10. Vekshin Yu.V., Lavrov A.P., Xvostov E.Yu. Metodika i rezul’taty’ issledovanij amplitudnoj i fazovoj stabil’nosti supergeterodinnogo radioastronomicheskogo priemnika // Radiotexnika. 2018. № 1. S. 24−30.
Date of receipt: 9 ноября 2018 г.