350 rub
Journal Radioengineering №1 for 2018 г.
Article in number:
Double magnetic resonance in the hyperfine structure of optically oriented alkali atoms with laser pumping
Type of article: scientific article
UDC: 539.184.2
Authors:

А.А. Баранов – к.ф.-м.н., инженер, Высшая школа прикладной физики и космических технологий, Институт физики, нанотехнологий и телекоммуникаций Санкт-Петербургского политехнического университета Петра Великого E-mail: 79111700994@ya.ru

С.В. Ермак – к.ф.-м.н., доцент, кафедра «Квантовая электроника», Институт физики, нанотехнологий и

телекоммуникаций Санкт-Петербургского политехнического университета Петра Великого E-mail: serge_ermak@mail.ru

Э.А. Сагитов – аспирант, Высшая школа прикладной физики и космических технологий, Институт физики, нанотехнологий и телекоммуникаций Санкт-Петербургского политехнического университета Петра Великого E-mail: e-sagitov@mail.ru

В.В. Семенов – д.ф.-м.н., профессор, Высшая школа прикладной физики и космических технологий, Институт физики, нанотехнологий и телекоммуникаций Санкт-Петербургского политехнического университета Петра Великого E-mail: Vladimir_semenov@mail.ru

Abstract:

The paper is devoted to the investigation of mutual influence of low-frequency and microwave resonances in 87Rb vapor cell magnetometers system with laser pumping. One of the magnetometers was based on a low-frequency spin generator principle, while the second one was built as passive microwave spectrometer with a resonance frequency lock loop. The paper analyzes the frequency shifts in the low-frequency and microwave channels of the tandem of magnetometers associated with the simultaneous action of the resonant radio fields on the alkali atoms. Such effect is manifested in the frequency shifts of the spin generator for fixed changes in the amplitude of the microwave field.

Pages: 88-92
References
  1. Fang J.C., Qin J. Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications // Sensors. 2012. V. 12. P. 6331−6346.
  2. Riehle F. Frequency Standards: Basics and Applications. Wiley-VCH. 2004.
  3. Alexandrov E.B., Vershovski A.K. Modern radio-optical methods in quantum magnetometry // Phys. Usp. 2009. V. 52. № 5. P. 573−601.
  4. Alzetta G., Gozzini A., Moi L., Orriols G. An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor // Nuovo Cimento: B. 1976. V. 36. P. 5−20.
  5. Jau Y.-Y, Post A.B., Kuzma N.N., Braun A.M., Romalis M.V., Happer W. Intense, narrow atomic-clock resonances // Phys. Rev. Letters. 2004. V. 92. № 11. P. 110801(1–4).
  6. Zimnitskii P.V., Smolin R.V., Ermak S.V., Semenov V.V. The effect of flicker processes on the resolution of self-oscillating magnetometers optically pumped in the saturation regime // Technical Physics Letters. 2014. V. 40. № 3. P. 271−273.
  7. Baranov A.A., Ermak S.V., Sagitov E.A., Smolin R.V., Semenov V.V. Double resonance frequency light shift compensation in optically oriented laser-pumped alkali atoms // Journal of Experimental and Theoretical Physics. 2015. V. 121. № 3. P. 393−403.
  8. Mathur B.S., Tang H., Happer W. Light shifts in alkali atoms // Phys. Rev. 1968. V. 171. № 1. P. 11−19.
  9. Kornienko L.S., Mayorshin V.V., Kotkin L.A.,Umarkhodgaev R.M. About the circulation of coherence in atoms with hyperfine structure of the ground state // Optics and Spectroscopy. 1982. V. 53. № 6. P. 370–372.
  10. Haroche S. L'atome habille: une etude theorique et experimentale des propriete physiques d'atomes en interaction avec des photons de radiofrequences // Ann De Phys. 1971. V. 6. № 4-5. P. 189−387.
  11. Novikov L.N., Skrotskii G.V. Nonlinear and parametric effects in atomic rf spectroscopy // Phys. Usp. 1978. V. 21. P. 589−610.
  12. Bell W.E., Bloom A.L. Optically Driven Spin Precession // Phys. Rev.Lett. 1961. V. 6. № 6. 11−19. P. 280−281.
  13. Happer W. Optical Pumping // Review of Modern Phys. 1972. V. 44. № 2, P. 170−249.
Date of receipt: 21 ноября 2017 г.