350 rub
Journal Radioengineering №7 for 2017 г.
Article in number:
Investigation of the electronic conductivity of a wire-frame nanomaterial based on a branched network of carbon nanotubes
Type of article: scientific article
UDC: 538.9
Authors:

O.E. Glukhova – Dr. Sc. (Phys.-Math.), Professor, Head of Department of Radiotechnique and Electrodynamics,

Saratov State University named after N.G. Chernyshevsky

E-mail: GlukhovaOE@info.sgu.ru

G.V. Savostyanov – Post-graduate Student, Assistant, Department of Radiotechnique and Electrodynamics, 

Saratov State University named after N.G. Chernyshevsky

E-mail: savostyanov.gv@gmail.com

Abstract:

In this paper, we study the electronic conductivity of a wire-frame nanomaterial based on a branched network of carbon nanotubes (CNTs). Using the molecular dynamics method, energetically stable T-shaped compounds were obtained between the CNTs of 1.6 nm in diameter. The contact resistance of the obtained structures was calculated by means of the non-equilibrium Green function method. A numerical estimate of the equivalent resistance and conductivity of a wire-frame nanomaterial based on a branched CNT network is given. The dependence of the conductivity of the investigated wire-frame nanomaterial on the degree of ordering of the CNTs is established.

Pages: 107-111
References
  1. Gerasimenko A.Yu., Ichkitidze L.P., Podgaeczkij V.M., Selishhev S.V. Lazerny'j metod sozdaniya biosovmestimy'x kompoziczionny'x nanomaterialov s uglerodny'mi nanotrubkami // Nanotexnologii v e'lektronike. Moskva: Texnosfera. 2013. 688 c. S. 407−448.
  2. Gerasimenko A.Yu., Ichkitidze L.P., Podgaetsky V.M., Selishchev S.V. Biomedical Applications of Promising Nanomaterials with Carbon Nanotubes // Biomed. Eng. 2015. V. 48(6). P. 23−27.
  3. Celebi A.T., Kirca M., Baykasoglu C., Mugan A., To A.C. Tensile behavior of heat welded CNT network structures // Computational Materials Science. 2014. V. 88. P. 14−21.
  4. Yuan Y., Chen J. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation // Nanomaterials. 2016. V. 6(36). P. 1−7.
  5. Brenner D.W., Shenderova O.A., Harrison J.A. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons // J. Phys.: Condens. Matter. 2002. V. 14(4). P. 783−802.
  6. Datta S. Quantum Transport: Atom to Transistor. Cambridge University Press: Cambridge. 2005. 419 p.
  7. Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G. Self-consistent-charge densityfunctional tight-binding method for simulations of complex materials properties // Phys Rev B. 1998. V. 58. P. 7260−7268.
  8. Pecchia A., Penazzi1 G., Salvucci1 L., Di Carlo A. Non-equilibrium Greens functions in density functional tight binding: method and applications // New Journal of Physics. 2008. V. 10. P. 065022.
  9. URL: nanokvazar.ru (data obrashheniya 10.02.2017).
  10. Bettinger H.F. The Reactivity of Defects at the Sidewalls of Single-Walled Carbon Nanotubes: The Stone−Wales Defect // J. Phys. Chem. B. 2005. V. 109(15). P. 6922−6924.
  11. Kirca M., Yang X., To A.C. A stochastic algorithm for modeling heat welded random carbon nanotube network // Comput. Methods Appl. Mech. Engr. 2013. V. 259. P. 1−9.
  12. URL: ngspice.sourceforge.net (data obrashheniya 20.03.2017).
Date of receipt: 28 июня 2017 г.