350 rub
Journal Radioengineering №7 for 2017 г.
Article in number:
Analysis of parasitic acoustic waves in lateral electric field excited piezoelectric resonators
Type of article: scientific article
UDC: 534.284
Authors:

B.D. Zaitsev – Dr. Sc. (Phys.-Math.), Professor, Head of Laboratory of Physical Acoustics, Saratov branch of Kotel'nikov IRE of RAS

E-mail: zai-boris@yandex.ru

A.A. Teplykh – Ph. D. (Phys.-Math.), Senior Research Scientist, Laboratory of Physical Acoustics, Saratov branch of Kotel'nikov IRE of RAS

E-mail: teplykhaa@mail.ru

Abstract:

All types of acoustic waves which exist in lateral electric field excited piezoelectric resonator based on the plates of lithium niobate with different crystallographic orientations are theoretically analyzed. It has been shown that along with the main bulk mode generated by lateral component of electric field there exist parasitic acoustic waves. They are antisymmetric Lamb and shear horizontal (SH) waves. These waves propagate along the plate surface, re-reflect from lateral sides and deteriorate the resonant properties of the resonator. For their suppression one may use the damping layer deposited on the certain part of the resonator. There exist also the parasitic bulk waves, which are excited by the normal component of electric field and propagate along the normal to the plate surface. For the suppression of these waves one may use the separation of the source of HF electric field and resounding piezoelectric plate.

Pages: 76-81
References
  1. Hu Y., French L.A., Radecsky K., Jr., Pereira da Cunha M., Millard P., Vetelino J.F. A lateral field excited liquid acoustic wave sensor // IEEE Trans. on Ultrason., Ferroel. and Freq. Control. 2004. V. 51. P. 1373−1379.
  2. York C., French L.A., Millard P., Vetelino J.F. A lateral field excited acoustic wave biosensor // Proc. of 2005 IEEE Ultrasonics Symposium. 2005. P. 44−49.
  3. McCann J.M., Sgambato K., McCann D.F., Vetelino J. Acoustic mode behavior in lateral field excited sensors // Proc. of 2009 IEEE International Ultrasonics Symposium. 2009. P. 645−648.
  4. Leblois T.G., Tellier C.R. Design of new lateral field excitation langasite resonant sensors // Proc. of 2009 IEEE International Ultrasonics Symposium. 2009. P. 2672−2675.
  5. Andle J.C., Haskell R., Chap M., Stevens D. Improved substrate selection for lateral field TSM sensors // Proc. of 2009 IEEE International Ultrasonics Symposium. 2009. P. 649−654.
  6. McCann D.F., McCann J.M., Parks J.M., Frankel D.J., Pereira da Cunha M., Vetelino J.F. A lateral-field-excited LiTaO3 high frequency bulk acoustic wave sensor // IEEE Trans. on Ultrason., Ferroel. and Freq. Control. 2009. V. 56. P. 779−787.
  7. Zhang Z., Wang W., Ma T., Zhang C., Feng G. Pseudo-LFE sensors with different electrode configurations on X-cut LiNbO3 // Proc. of 2009 IEEE International Ultrasonics Symposium. 2009. P. 655−658.
  8. Zuo C., Van der Spiegel J., Piazza G. 1.05-GHz CMOS oscillator based on lateral-field-excited piezoelectric AlN contour-mode MEMS resonators // IEEE Trans. on Ultrason., Ferroel., and Freq. Control. 2010. V. 57. P. 82−87.
  9. Hempel U., Lucklum R., Hauptmann P.R., EerNisse E.P., Puccio D., Fernandez Diaz R. Quarts crystal resonator sensor under lateral field excitation - a theoretical and experimental analysis // Measurement Science and Technology. 2008. V. 19. P. 1−11.
  10. Zajczev B.D., Kuzneczova I.E. Shixabudinov A.M., Vasil’ev A.A. Novy’j sposob podavleniya parazitny’x mod v p’ezoe’lektricheskom rezonatore s poperechny’m e’lektricheskim polem // Pis’ma v ZhTF. 2011. T. 37. S. 27−34.
  11. Ma T., Wang J., Du J., Yuan L., Qian Z., Zhang Z., Zhang C. Lateral-field-excited bulk acoustic wave sensors on langasite working on different operation modes // IEEE Trans. on Ultrason., Ferroel. and Freq. Control. 2013. V. 60. P. 864−867.
  12. Zaitsev B.D., Kuznetsova I.E., Shikhabudinov A.M., Ignatov O.V., Guliy O.I. Biological Sensor Based on a Lateral Electric Field Excited Resonator // IEEE Trans. on Ultrason., Ferroel., and Freq. Control. 2012. V. 59. P. 963−969.
  13. Zaitsev B.D., Kuznetsova I.E., Shikhabudinov A.M., Teplykh A.A., Borodina I.A. The Study of Piezoelectric Lateral - Electric - Field - Excited Resonator // IEEE Trans. on Ultrason. Ferroel. and Freq. Control. 2014. V. 61. P. 166−172.
  14. Zaitsev B.D., Shikhabudinov A.M., Teplykh A.A., Kuznetsova I.E. Liquid sensor based on a piezoelectric lateral electric field-excited resonator // Ultrasonics. 2015. № 63. P. 179−183.
  15. Borodina I.A., Zaitsev B.D., Teplykh A.A., Shikhabudinov A.M., Kuznetsova I.E. Array of piezoelectric lateral electric field excited resonatots // Ultrasonics. 2015. № 62. P. 200−202.
  16. Zaitsev B.D., Shikhabudinov A.M., Borodina I.A., Teplykh A.A., Kuznetsova I.E. Composite Lateral Electric Field Excited Piezoelectric Resonator // Ultrasonics. 2017. V. 73. P. 125−129.
  17. Ballato A. Extended Christoffel-Bechmann elastic wave formalism for piezoelectric, dielectric media // Proc. of 2000 IEEE/EIA International Frequency Control Symposium and Exhibition. 2000. P. 340−344.
  18. Dieulesaint E., Doyer D. Elastic Waves in Solids I, Free and Guided Propagation. Springer-Verlag Berlin Heidelberg. 2000.
  19. Teplykh A.A., Zaitsev B.D., Kuznetsova I.E. Numerical model of piezoelectric lateral electric field excited resonator // Sensors&Transducers Journ. 2015. V. 184. P. 60−65.
Date of receipt: 28 июня 2017 г.