Journal Radioengineering №5 for 2017 г.
Article in number:
The discrete representation of the microwave antenna with complex spatial configuration
Type of article: scientific article
UDC: 621.396.677: 51-74
Authors:

A.N. Yakimov – Dr. Sc. (Eng.), Professor, Department of Designing and Technology of Electronic and Laser Means, Saint-Petersburg State University of Aerospace Instrumentation

E-mail: y_alder@mail.ru

Abstract:

We consider the problem of discrete representation of the radiating surface of the microwave antenna with a complex spatial configuration and modeling of radiation of this antenna by the finite element method. The proposed partition with uniform step most of the radiating surface, allowing you to control the size of the elements of the partition by the whole radiating surface, and to achieve better approximation accuracy at the same computational cost. For a mirrored parabolic antenna constructed of geometric and electrodynamic model and calculation of the chart orientation at different steps of the sampling surface, allowing you to select the step providing the required accuracy. The results show that the proposed finite element mathematical model can be used in the design of antennas with complex spatial configuration, and to analyze the effect on the radiation characteristics of antennas of different deformation effects.

References
  1. Sabonnad'er Zh.K., Kulon Zh.L. Metod konechny'x e'lementov i SAPR: Per. s fr. M.: Mir. 1989. 190 s.
  2. Semenov A.A. Teoriya e'lektromagnitny'x voln. M.: Izd-vo MGU. 1968. 320 s.
  3. Titarenko V.N., Yagola A.G. Metod otsecheniya vy'pukly'x mnogogrannikov i ego primenenie k nekorrektny'm zadacham// Vy'chislitel'ny'e metody' i programmirovanie. 2000. T. 1. № 1. S. 8−13.
  4. Repnev D.N., Saratovskij N.V., Filatova A.I. Metod nelinejnoj diskretizaczii setki konechny'x e'lementov v inzhenernom analize teplovy'x rezhimov RE'S // Informaczionno-izmeritel'ny'e i upravlyayushhie sistemy'. 2011. № 11. S. 142−145.
  5. Shishov M.V., Yurkov N.K., Yakimov A.N. An Estimate of the Error in Constructing a Geometric Model of an Antenna Mirror by the Delone Method// Measurement Techniques. November 2014. V. 57. № 8. P. 919−925.
  6. Proskurin V.I. Prostranstvennoe predstavlenie i diskretizacziya radiolokaczionny'x xarakteristik rasseivayushhix ob''ektov v dal'nej zone // Radiotexnika. 2009. № 9. S. 110−116.
  7. Moiseev N.N., Ivanilov Yu.P., Stolyarova E.M. Metody' optimizaczii. M.: Nauka. 1978. 352 s.
  8. Kyun R. Mikrovolnovy'e antenny': Per. s nem. L.: Sudostroenie. 1967. 518 s.
  9. Borzov A.B., Sokolov A.V., Suchkov V.B. Metody' czifrovogo modelirovaniya radiolokaczionny'x xarakteristik slozhny'x ob''ektov na fone prirodny'x i antropogenny'x obrazovanij // Zhurnal radioe'lektroniki (e'lektronny'j zhurnal). 2000. № 3. URL: http://jre.cplire.ru/koi/mar00/3/text.html (data obrashheniya 17.12.2016).
  10. Bayat N., Mojabi P. The effect of antenna incident field distribution on microwave tomography reconstruction // Progress In Electromagnetics Research. 2014. V. 145. P. 153−161.
  11. Conceicao R.C., O'Halloran M., Glavin M., Jones E. Comparison of Planar and Circular Antenna Configurations for Breast Cancer Detection Using Microwave Imaging // Progress In Electromagnetics Research. 2009. V. 99. P. 1−20.
  12. O'Halloran M., Glavin M., Jones E. Rotating Antenna Microwave Imaging System for Breast Cancer Detection // Progress In Electromagnetics Research. 2010. V. 107. P. 203−217.
Date of receipt: 28 февраля 2017 г.