350 rub
Journal Radioengineering №3 for 2017 г.
Article in number:
Method for detection of errors in storage devices and information transfer
Authors:
A.A. Pavlov - Dr. Sc. (Eng.), Professor, Military Academy RVSN them. Peter the Great (the branch in Serpukhov) E-mail: Pavlov_iif@mail.ru A.N. Tsar\'kov - Dr. Sc. (Eng.), Professor, Institute of Engineering Physics (Serpukhov) E-mail: info@iifrf.ru P.A. Pavlov - Research Scientist, Institute of Engineering Physics (Serpukhov) E-mail: info@iifrf.ru D.A. Korsunskiy - Research Scientist, Institute of Engineering Physics (Serpukhov) E-mail: info@iifrf.ru
Abstract:
In the operation information storage and transmission devices (UHPI) has a number of them independent one from the other factors which lead to errors in the processed binary information. Experience has shown that in UHPI the most likely event is the occurrence of single and double faults (on single errors account for up to 80% on a double fault to 20-25% and other errors of multiplicity. Analysis of the existing methods for detecting errors in UHPI shows that the structural error detection methods, such as a majority method duplication, a paraphase logic cross detecting logic have high capacity, high speed, however, require larger hardware amount. It is found that excessive coding method is effective in detecting errors UHPI. Using algebraic linear codes with d = 3, can detect single and double errors, reduce hardware expenses backup equipment (requires 30% of the initial cost of hardware), but its use requires a significant amount of parity (check digits). To reduce the number of verification code characters that detects single and double errors, it can be used on the control module, which allows to detect all single errors and double faults with a certain probability for each module respectively Rmod3 = 0.5; Rmod5 = 0.75; Rmod7 = 0.833; Rmod11 = 0.9. The disadvantage of this control are large instrumental and time costs associated with the division operation to obtain a residue, or to the organization transfers in the construction pyramid schemes convolution to the full adder. Thus, there exists a contradiction on the one hand, between the need to increase the ability of detecting embedded control means and, on the other moans, growth information, instrumental and temporal redundancy, resulting in reduced efficiency. To resolve the contradictions identified, it is necessary to increase the ability to discover a means of control, or reduce their hardware expenses (increase the uptime of controls), or at the same time to improve these indicators. In this article of the decision is carried out scientific tasks is to develop a linear algebraic code to improve the reliability of operation of the storage and transmission of information while reducing information redundancy and instrumental. Presented is a regular procedure for encoding information to detect single and double errors storage and transmission of information with minimal instrumental and information redundancy. The mathematical expression for estimating the parameters of the code. A comparative evaluation of the detecting ability, instrumen-tal and informational redundancy with respect to the Hamming code (used for error detection) on the example of 12-bit data word. It is found that by using three check bits (two control discharge less than the Hamming code), the proposed code provides detection of all single than 90% of the double errors and uses a quarter less hardware amount for encoding and decoding information (required respectively 41 and 55 mod 2 adders).
Pages: 50-58
References

 

  1. Bashkirov A.V., Muratov A.V., Suslova O.E. Obzornyjj analiz pomekhoustojjchivogo kodirovanija v cifrovykh sistemakh peredachi dannykh // Radiotekhnika 2016. № 6. S. 31-35.
  2. Bashkirov A.V., Muratov A.V., KHoroshajjlova M.V. Nizkoplotnostnye kody malojj moshhnosti dekodirovanija // Radiotekhnika 2016. № 5. S. 32-37.
  3. Bashkirov A.V., Naumenko JU.S., Sobolev O.E. Realizacija dekodirovanija po algoritmu Viterbi na massivno-parallelnykh vychislitelnykh ustrojjstvakh // Radiotekhnika. 2014. № 11. S. 20-24.
  4. Berezjuk N.T., Andrushhenko A.G., Moshhickijj S.S. i dr. Kodirovanie informacii (dvoichnye kody). KHarkov: Vishha shkola. 1978. 152 s.
  5. Bljudov A.A., Sapozhnikov V.V., Sapozhnikov Vl.V. Modificirovannyjj kod s summirovaniem dlja organizacii kontrolja kombinacionnykh skhem // AiT. 2012. №1. S. 169-177.
  6. Glushko A.A., Zinchenko L.A., SHakhnov V.A. Modelirovanie vozdejjstvija tjazhelykh zarjazhennykh chastic na kharakteristiki polevykh tranzistorov struktury «kremnijj na izoljatore» // Radiotekhnika i ehlektronika. 2015. T. 60. № 10 . S. 1090-1096. DOI:10.7868/S0033849415070074.
  7. Zolotarev V.V., Ovechkin G.V. Novye sredstva korrekcii oshibok dlja vysokoskorostnojj peredachi i khranenija dannykh // Radiotekhnika. 2016. № 8. S. 104-109.
  8. Meshherjakov S.A., Berdyshev A.V. EHlektroteplovaja model vozdejjstvija ehlektromagnitnogo izluchenija na poluprovodnikovye struktury // Radiotekhnika i ehlektronika. 2013. T. 58.\ №:11.\\S. 1127-1133. DOI: 10.7868/S0033849413110119.
  9. Pavlov A.A., Carkov A.N., KHoruzhenko O.V., Pavlov P.A. Metod kontrolja oshibok v ustrojjstvakh khranenija i peredachi informacii avtomatizirovannykh sistem izmeritelnojj tekhniki // Izmeritelnaja tekhnika. 2010. № 11. S. 21-25.
  10. Pavlov A.A., Carkov A.N., Pavlov P.A., Gusev K.V., Gusev A.V. Sorokin D.E., Lasjak M.I. Metod pomekhoustojjchivogo kodirovanija informacii kanalov peredachi dannykh teleizmeritelnykh informacionnykh sistem s korrekciejj oshibok v dvukh bajjtakh informacii // Izmeritelnaja tekhnika. 2014. № 7. S. 10-15.
  11. Pavlov A.A., Carkov A.N., Pavlov P.A., Sorokin D.E., Gusev A.V. Lasjak M.I. Metod pomekhoustojjchivogo kodirovanija informacii kanalov peredachi dannykh s ispravleniem oshibok v dvukh bajjtakh informacii // Vestnik kompjuternykh i informacionnykh tekhnologijj. 2015. № 1. S. 15-21.
  12. Piterson U., Uehldon EH. Kody, ispravljajushhie oshibki. M.: Mir. 1976. 594 s.
  13. Putincev N.D. Apparatnyjj kontrol cifrovykh vychislitelnykh mashin. M.: Sov. radio. 1968. 424 s.
  14. KHetagurov JA.A., Rudnev JU.P. Povyshenie nadezhnosti cifrovykh ustrojjstv metodami izbytochnogo kodirovanija. M.: EHnergija. 1974. 272 s.
  15. SHHerbakov N.S. Dostovernost raboty cifrovykh ustrojjstv. M.: Mashinostroenie. 1989. 224 s.
  16. Naseer R., Draper J. Parallel Double Error Correcting Code Design to Mitigate Multi-Bit Upsets in SRAMs // Information Sciences Institute University of Southern California, IEEE Trans. Device Mater. 2008. V. 6. P. 222-225.
  17. Frank Hall Schmidt, Jr. Fault Tolerant Design Implementation on Radiation Hardened By Design SRAM-Based FPGAs // Electrical Engineering United States Air Force Academy Submitted to the Department of Aeronautics and Astronauticsin partial ful. 2011. 306 p.
  18. Reviriego P., Flanagan M., Maestro J.A. A (64,45) Triple Error Correction Code for Memory Applications // IEEE Trans. Device Mater. Rel. Mar. 2012. V. 12. № 1. P. 101-106.
  19. Veronese G.S., Correia M., Bessani A.N., Lung L.C., Verissimo P. Efficient Byzantine fault-tolerance // IEEE Transactions on Computers. 2013. P. 21-27.
  20. Luiz A.F., Lung L.C., Correia M. MITRA: Byzantine Fault-Tolerant Middleware for Transaction Processing on Replicated Databases // SIGMOD Record. Mar. 2014. V. 43. № 1. P. 14-20.