350 rub
Journal Radioengineering №2 for 2017 г.
Article in number:
Experimental studies of the spatial distribution of the self-radiation atmospheric background within infrared wave band
Authors:
A.M. Mischenko - Post-graduate Student, Department of Special Electronic Systems, Vasilevsky Military Academy of Air Defense Forces RF (Smolensk) E-mail: kycu@mail.ru S.S. Rachkovsky - Engineer, Department of Computer Engineering, Smolensk branch of «National Research University «MPEI» E-mail: 59rss@rambler.ru V.A. Smolin - Post-graduate Student, Assistant, Department of Electronics and Microprocessor Engineering, Smolensk branch of «National Research University «MPEI» E-mail: smolin.vofka@yandex.ru I.V. Yakimenko - Dr. Sc. (Eng.), Associate Professor, Department of Electronics and Microprocessor Engineering, Smolensk branch of «National Research University «MPEI» E-mail: jakigor@rambler.ru
Abstract:
The previously obtained results of experimental studies of spatial structure of self-radiation background of atmospheric inhomogeneities in the infrared wavelength range are sketchy. Since these studies were carried out sporadically, for specific types and cloud points, and in accordance with the methods chosen by each of the investigators on the basis of tasks, the capabilities of the equipment, the creation of which has always caused considerable technical difficulties for the infrared range. In this regard, has been developed a method of experimental studies of the spatial distribution of fluctuations radiance own radiation atmospheric background in infrared wavelengths. Experimental studies consisted of measurements and processing of results to obtain mathematical models describing the statistical regularities of the spatial structure of fluctuations radiance of self-radiation atmospheric background within the selected fragments. They were carried out using a specially designed measuring and computer complex, which is to assess the parameters of the calibration work for the radiometer were conducted. Measurements of fluctuations radiance of the self-radiation atmospheric background held by the raster scanning axis of the dual-channel radiometer in the selected fragment atmospheric background. In these studies, the radiometer was placed vertically, changing the position of the optical axis was carried out by means of deviating mirrors. Moving mirror provides by controlled rotation of the two stepper motors in azimuth and elevation direction, with the selected sampling interval. As receivers of optical radiation used pyroelectric receivers MG-30. The microcontroller on the program consistently commute each of the receivers through a normalizing amplifier to the input of the ADC, where the analog signal converts into a digital code that is after the transformation was placed in the appropriate SRAM registers. After data acquisition, microcontroller conducted the execution of mathematical operations on the intermediate data, we calculated the value of the mathematical expectation and variance, which are then placed in an external microcontroller flash memory. Thus formed the aggregate statistical estimates of the spatial structure of fluctuations radiance of the self-radiation atmospheric background, corresponding with background images prepared for different types and cloud points in the range of 3-5 microns and 8-13. The resulting estimates can be represented as a spatial distribution of the averages or variances radiance self- radiation at-mospheric background in tabular form (matrix) or surface distribution average of radiance and variances. Thus, the experimental results, in the form of spatial distribution of the mean values or the variances of fluctuations radiance, allow us to construct mathematical models that take into account the statistical regularities of the spatial structure of the radiance fluctuations background of atmospheric ranges 3-5 and 8-13 microns. Such models are necessary to carry out a simulation of the process of mathematical modeling to detect air targets background of atmospheric optical-electronic systems, operating in bands 3-5 and 8-13 microns. The results of mathematical modeling are needed to assess the parameters necessary for the design of new and modernization of existing optoelectronic systems.
Pages: 119-125
References

 

  1. Allenov M.I., Solovev V.A. i dr. Stokhasticheskaja struktura izluchenija oblachnosti. SPb.: Gidrometeoizdat. 2000. 175 s.
  2. Allenov A.M., Ivanov N.P. Vremennaja izmenchivost prostranstvennojj struktury izluchenija neba v diapazone 8−13 mkm pri kuchevojj oblachnosti // Opticheskijj zhurnal. 2001. № 3. T. 68. S. 43−44.
  3. Zvezhinskijj S.S. Povyshenie funkcionalnojj ehffektivnosti sredstv obnaruzhenija // Spec. tekhnika. 2005. № 5. S. 11−14.
  4. Olgin S.V. Mnogofunkcionalnaja optoehlektronnaja sistema nabljudenija dlja VMS Izrailja // Zarubezhnoe voennoe obozrenie. 2002. № 6. S. 21−22.
  5. Zhensen Wu Anan Liu. Scattering of Solar and Atmospheric Background Radiation from a Target // International Journal of Infrared and Millimeter Waves. 2002. V. 23. № 6. P. 907−917.
  6. McNally A.P., Watts P.D. A cloud detection algorithm for high-spectral-resolution infrared sounders // Q. J. R. Meteorol. Soc. 2003. 129. P. 3411−3423.
  7. Prikhodko V.N., KHisamov R.SH. Obnaruzhenie «tochechnykh» obektov teplopelengatorom na osnove matrichnogo fotopriemnogo ustrojjstva // Oboronnaja tekhnika. 2007. № 1−2. S. 64−66.
  8. CHuprakov A.M., KHitrik A.S. Teplovizionnyjj pricel na osnove matrichnogo bolometricheskogo priemnika // Optiko-ehlektronnye sistemy vizualizacii i obrabotki opticheskikh izobrazhenijj: Sb. statejj № 2 / Pod red. V.V. Tarasova, JU.G. JAkushenkova. M.: CNII «Ciklon». 2007. S. 60−71.
  9. Artjunov V.A., Vasilev I.S. Perspektivy razrabotok monolitnykh okhlazhdaemykh matrichnykh infrakrasnykh priborov dlja kompleksirovannykh mnogospektralnykh sistem obnaruzhenija v diapazonakh 1,5−5 i 8−12 mkm // Optiko-ehlektronnye sistemy vizualizacii i obrabotki opticheskikh izobrazhenijj: Sb. statejj. № 2 / Pod red. V.V. Tarasova, JU.G. JAkushenkova. M.: CNII «Ciklon». 2007. S. 3−17.
  10. Korotkov O.V. Perspektivy sozdanija v FGUP «KBtochmash imeni A.EH. Nudelmana» zenitnykh raketnykh i artillerijjskikh kompleksov malojj dalnosti na shassi povyshennojj prokhodimosti dlja takticheskogo zvena vojjskovojj PVO // XVI Voenno-nauchnaja konf. VA vojjskovojj PVO VS RF. Sb. nauchnykh materialov. CHast 1. 2008.
  11. Alpatov B.A., Babajan P.V., Balashov O.E., Stepashkin A.I. Metody avtomaticheskogo obnaruzhenija i soprovozhdenija obektov. Obrabotka izobrazhenijj i upravlenie. M.: Radiotekhnika. 2008. 176 s.
  12. Gansales R., Vuds R. Cifrovaja obrabotka izobrazhenijj. M.: Tekhnosfera. 2005. 1012 s.
  13. Sojjfer V.A. Metody kompjuternojj obrabotki izobrazhenijj. M.: FIZMATLIT. 2003. 784 s.
  14. Marchuk G.I. Metody vychislitelnojj matematiki [EHlektronnyjj resurs]. SPb.: Lan. 2009. 608 s. Rezhim dostupa: http://e.lanbook.com/book/255.