350 rub
Journal Radioengineering №2 for 2017 г.
Article in number:
Estimation of tracking target using a fixed beam active phased array radar in far-field region
Authors:
A.V. Kvasnov - Ph. D. (Eng.), Assistant, Department «Control Systems and Technologies», Peter The Great St. Petersburg Polytechnic University E-mail: AntonKV@mail.ru
Abstract:
During research the analysis of the formation of radar target trajectory was conducted in far-field region. Primary data for processing was characteristics the fixed beam active phased array radar, which provides object detection, the formation of primary the target coordinates (range, elevation and azimuth) and the formation of target track (speed, heading, altitude). As a mathematical tool was used by a section of theoretical mechanics, which allows to analytically describe the motion of an object in curvilinear coordinate systems. The scanning beam of active phased array radar uses the sum-difference method for processing the bearing. It has a statistical regu-larity in the target detection marks along the aperture active phased array radar. The probability of target detection is described by the exponential law of distribution depending on the angle of the object. The formation marks the target in the aperture of the beam active phased array radar is a discrete nature. It depends on the potential accuracy of the angular coordinates and main-lobe width of the radiation pattern. During the simulation it is found that target detection in an arbitrary region of beam the aperture active phased array radar does not significantly affect the accuracy of determining the speed, course and altitude. The formation of the trajectory should be performed for marks the target, produced in the early discovery stage and the final time when the object leaves the area of beam the aperture active phased array radar.
Pages: 4-12
References

 

  1. Kuzmin S.Z. Osnovy proektirovanija sistem cifrovojj obrabotki radiolokacionnojj informacii. M.: Radio i svjaz.1986. 352 s.
  2. Gostjukhin V.L., Trusov V.N., Gostjukhin A.V. Aktivnye fazirovannye antennye reshetki. Izd. 3-e, pererab. i dop. M.: Radiotekhnika. 2011. 304 s.
  3. Dudnik P.I., Ilchuk A.R., Tatarskijj B.G. Mnogofunkcionalnye radiolokacionnye sistemy: Ucheb. posobie dlja vuzov. M.: Drofa. 2007. 283 s.
  4. Kvasnov A.V., Poljakov V.B. Analiz algoritmov skanirovanija vozdushnogo prostranstva AFAR dlja sokrashhenija vremeni poiska nadvodnykh i aehrodinamicheskikh celejj // Radiopromyshlennost (M.: CNII «EHlektronika»). 2016. № 2. S. 24−35.
  5. Barton D., Vard G. Spravochnik po radiolokacionnym izmerenijam. M.: Sov. radio. 1976. 392 s.
  6. Gladilin P.E., Kvasnov A.V., Fimushin JU.V. Novye podkhody k resheniju problemy obrabotki radiolokacionnojj informacii v korabelnykh RLS // Morskaja radioehlektronika (SPb: Otraslevye zhurnaly). 2016. № 2 (56). S. 44−45.
  7. Spravochnik po radiolokacii. Pod red. M. Skolnika. T. 1. Osnovy radiolokacii. M.: Sov. radio. 1976. 456 s.
  8. CHernjak V.S. Mnogopozicionnaja radiolokacija. M.: Radio i svjaz. 1993. 416 s.
  9. Butenin N.V., Lunc JA.L., Merkin D.R. Kurs teoreticheskojj mekhaniki. V 2-kh tomakh. Izd. 11-e, stereotip. SPb: Lan. 2009. 736 s.
  10. Bronshtejjn I.N. Spravochnik po matematike. Dlja inzhenerov i uchashhikhsja VTUZOV. Izd. 10-e. M.: Nauka. 1965. S. 608.