350 rub
Journal Radioengineering №11 for 2017 г.
Article in number:
Mutual angular V2V determinations with DSRC utilization
Type of article: scientific article
UDC: 621.396
Authors:

I.V. Korogodin – Ph. D. (Eng.), Associate Professor, Department of Radio Systems, 

«National Research University «MPEI» (Moscow) E-mail: korogodin@srns.ru

V.V. Dneprov – Post-graduate Student, Department of Radio Systems, «National Research University «MPEI» (Moscow) E-mail: vvdneprov@mail.ru

Abstract:

In this paper we describe a relative vehicle-to-vehicle (V2V) attitude estimation approach, an algorithm, experimental results and analysis of error sources. We also describe antenna system electromagnetic simulation results which allow to estimate how mutual influence of antennas decreases angular measurements accuracy. Experimental results prove workability of proposed approach.

Pages: 9-21
References
  1. Joon Wayn Cheong, Eamonn Glennon, Andrew Dempster, Damien Serant, Thibaud Calmettes. «Modelling and Mitigating Multipath and NLOS for Cooperative Positioning in Urban Canyons». 2015.
  2. SAE J2945/1: «Surface Vehicle Standard: On-board Systems Requirements for V2V Safety Communications». 2015.
  3. SAE J2735: «Dedicated Short Range Communication (DSRC) Message Set Dictionary». 2016.
  4. ETSI ES 202 663: «Intelligent Transport Systems (ITS); European profile standard for the physical and medium access control layer of Intelligent Transport Systems operating in the 5 GHz frequency band». 2009.
  5. IEEE Std. 802.11p-2010 «IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems–Local and Metropolitan Area Networks–Specific Requirements Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)». 2010.
  6. IEEE Std. 1609.4-2016 «IEEE Standard for Wireless Access in Vehicular Environments (WAVE) -- Multi-Channel Operation». 2016.
  7. ETSI TS 102 637-2: «Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service». 2011.
  8. Tixonov V.I., Xarisov V.N. Statisticheskij analiz i sintez radiotexnicheskix ustrojstv i sistem. M.: Radio i svyaz’. 2004. 608 s.
  9. IEEE Std 1609.3-2016 «IEEE Standard for Wireless Access in Vehicular Environments (WAVE) – Network Services». 2016.
  10. Wong C., Klukas R., Messier G.G. «Using WLAN infrastructure for angle-of-arrival indoor user location», VTC Fall, IEEE. P. 1−5. 2008.
  11. Asaf Tzur, Ofer Amrani, and Avishai Wool. «Direction Finding of rogue Wi-Fi access points using an off-the-shelf MIMO–OFDM receiver», Physical Communication. 2015.
  12. Martin Schüssel. «Angle of Arrival Estimation using WiFi and Smartphones», Intl. Conf. Indoor Positioning and Indoor Navigation, Spain. 2016.
  13. Jijun Yin, Gavin Holland, Tamer Elbatt, Fan Bai, Hariharan Krishnan. «DSRC channel fading analysis from empirical measurement», in Proceedings of the 1st IEEE International Workshop on Vehicle Communications and Applications (Vehiclecomm). Beijing. China. October 2006.
  14. Acosta-Marum G., Ingram M.A. «Six Time- and Frequency- Selective Empirical Channel Models for Vehicular Wireless LANs», IEEE 66th Vehicular Technology Conference. P. 2134−2138. 2007.
  15. Islam T., Boltjes B., Y. Hu, Onur E., J.F.C.M de Jongh. «Realistic Simulation of IEEE 802.11p Channel in Mobile Vehicle to Vehicle Communication», 13th International Conference on Microwave Techniques (COMITE), Pardubice, Czech Republic. April 17−18. 2013.
  16. Kukolev P., Chandra A., Mikulasek T., and Prokes A. «Out of vehicle channel sounding in 5.8 GHz band», Proc. IEEE RNDM. P. 341−344. Oct. 2015.
  17. Keysight Technologies. «Solutions for 802.11p Wireless Access in Vehicular Environments (WAVE) Measurements», Application Note 5992-1353EN. USA. October 31. 2016.
  18. Halperin D., W. Hu, Sheth A., and Wetherall D. «Tool Release: Gathering 802.11n Traces with Channel State Information». ACM SIGCOMM CCR, 41(1):53. Jan. 2011.
  19. Halperin D. Two Antennas are Better than One: A Measurement Study of 802.11n. dhalperi.github.io/linux-80211n-csitool. University of Washington. 2009.
  20. http://dhalperi.github.io/linux-80211n-csitool.
  21. Korogodin I.V., Bukreev A.M. Kompensacziya raznosti fazovy’x nabegov v radiochastotny’x blokax uglomernoj apparatury’ SRNS GLONASS // Radiotexnika. M.: Radiotexnika. 2012. № 6. S. 140−147.
Date of receipt: 23 октября 2017 г.