350 rub
Journal Radioengineering №10 for 2017 г.
Article in number:
Spectral and energy efficiency modulation for high symbol rate transmissions
Type of article: scientific article
UDC: 621.396.94
Authors:

O.A. Gevorgian – Engineer of the 2nd category, PJSC «Radiofizika» (Moscow); Post-graduate Student, Moscow Technological University (MIREA)

E-mail: useworkstudy@hotmail.com

Abstract:

This article is about the energy and spectral efficiency signal formats, that meet the requirements for transmission and reception systems of the occupied bandwidth and reliability of reception. The author applys perspective methods of modulation widely used and included in various telemetry standards. The selected signals are examined and analyzed from various points of view, in particular using computer modeling and information available via open sources. The author provides basic information, mathematical description, characteristics, reveal advantages and disadvantages. This paper shows that the main problem of realization of a receiving device are the complexity and resource intensity. There is a number of questions which are not still widely studied on this topic. The author develops recommendations of applicability of the described types of modulation.

Pages: 69-80
References
  1. Emel’yanov P.B., Paramonov A.A. Diskretny’e signaly’ s neprery’vnoj fazoj // Zarubezhnaya radioe’lektronika. 1990. № 12. S. 17−34.
  2. Kulikov G.V., Balanov M.Yu. E’ffektivnost’ adaptivnoj fil’traczii nefluktuaczionny’x pomex pri prieme signalov s cziklicheski izmenyayushhimsya indeksom modulyaczii // Radiotexnika i e’lektronika. 2005. T. 50. № 1. S. 50−53.
  3. Anderson J.B., Aulin T., Sundberg C-E. Digital phase modulation. N. Y.: Springer Science & Business Media. 2013.
  4. Aulin T., Rydbeck N., Sundberg C-E. Continuous phase modulation. Part II: Partial response signaling // IEEE Transactions on Communications. 1981. V. 29. № 3. P. 210−225.
  5. Xiong. Digital modulation techniques. MA: Artech House. 2006.
  6. Murota K., Kenkichi H. GMSK modulation for digital mobile radio telephony // IEEE Transactions on communications. 1981. V. 29. № 7. P. 1044−1050.
  7. Pasupathy S. Minimum shift keying: A spectrally efficient modulation // IEEE Communications Magazine 1979. V. 17. № 4. P. 14−22.
  8. Liu Jiaxing. Spacecraft TT&C and information transmission theory and technologies. N.-Y.: Springer. 2014.
  9. Prokis Dzh. Czifrovaya svyaz’. M.: Radio i svyaz’. 2000.
  10. Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm // IEEE transactions on Information Theory. 1967. V. 13. № 2. P. 260−269.
  11. Modulyacziya s e’ffektivnoj polosoj propuskaniya. Rekomendacziya CCSDS B20.0-Y-2. Vy’pusk 2. Zheltaya kniga. Konsul’tativny’j komitet po kosmicheskim sistemam peredachi danny’x. Iyun’ 2001.
  12. D.I. S. Agency, Department of Defense interface standard, interoperability standard for single-access 5-kHz and 25-kHz UHF satellite communications channels. Tech. Rep. MIL-STD-188-181B. Department of Defense. Mar. 1999.
  13. Range Commanders Council Telemetry Group, Range Commanders Council, White Sands Missile Range. New Mexico. IRIG Standard 106-00: Telemetry Standards. 2004. URL = http://www.ntia.doc.gov/osmhome/106.pdf (data obrashheniya: 13.08.2017).
  14. Hill T.J. An enhanced, constant envelope, interoperable shaped offset QPSK (SOQPSK) waveform for improved spectral efficiency // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2000.
  15. Hill T.J. A non-proprietary, constant envelope, variant of shaped offset QPSK (SOQPSK) for improved spectral containment and detection efficiency // 21stCentury Military Communications Conference Proceedings (MILCOM-2000). IEEE. 2000. V. 1. P. 347−352.
  16. Umashankar B. SOQPSK–A spectrally efficient modulation scheme for aeronautical telemetry applications // International Journal of Engineering Science and Innovative Technology (IJESIT). 2013. V. 2. № 2. P. 383−388.
  17. Middlestead R.W. Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications. N. J.: John Wiley & Sons. 2017.
  18. Sahin C., Perrins E. The capacity of SOQPSK-TG // Military Communications Conference (MILCOM-2011). IEEE. 2011. P. 555−560.
  19. Alam D. Coded SOQPSK-TG using the Soft Output Viterbi Algorithm // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2009.
  20. Modulations B.E. Summary of Definition, Implementation and Performance. CCSDS 413.0-G-1. Green Book. 2003.
  21. Sb. rekomendaczij gruppy’ po koordinirovaniyu voprosov ispol’zovaniya radiochastot v kosmicheskix proektax SFCG. Redakcziya 2008 g.
  22. Perrins E., Rice M. Reduced-complexity approach to iterative detection of coded SOQPSK // IEEE Transactions on Communications. 2007. V. 55. № 7. P. 1354−1362.
  23. Hosseini E., Perrins E. FPGA implementation of a coherent SOQPSK-TG demodulator // Military Communications Conference (MILCOM2011). IEEE. 2011. P. 471−476.
  24. Perrins E. FEC systems for aeronautical telemetry // IEEE Transactions on Aerospace and Electronic Systems. 2013. V. 49. № 4. P. 2340−2352.
  25. Hosseini E. Synchronization of SOQPSK-TG in burst-mode transmissions // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2013.
  26. Vikulov V.M., Gevorgyan O.A., Paramonov A.A. Oczenka e’ffektivnosti ispol’zovaniya signala SOQPSK v kosmicheskix liniyax svyazi // Sistemy’ komp’yuternoj matematiki i ix prilozheniya. 2017. S. 7−10.
  27. Chalfant T.A., Irving C.E. Range telemetry improvement and modernization // International Telemetering Conference Proceedings. International Foundation for Telemetering. 1997.
  28. Geoghegan M. Description and performance results for the advanced range telemetry (ARTM) Tier II waveform // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2000.
  29. Hill T. Advanced Modulation.Techniques for Telemetry // Short Course at the International Telemetering Conference. Las Vegas. 2011.
  30. Temple K. ARTM Tier II waveform performance // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2003.
  31. Pat. US № 4567602 H03K 1/02. Correlated Signal Processor / Kato S., Feher K.
  32. Pat. US № 5491457 Modulation amplification / Kato S., Feher K.
  33. Jefferis R. FQPSK-B Baseband Filter Alternatives // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2002.
  34. Law E.L. IRIG FQPSK-B Standardization Progress Report // International Telemetering Conference Proceedings. International Foundation for Telemetering. 2000.
  35. Simon M.K., Yan T.Y. Performance evaluation and interpretation of unfiltered Feher-patented quadrature phase-shift keying (FQPSK) // JPL TMO Progress Report. 1999. P. 42−137.
  36. Gao W., Feher K. FQPSK: A bandwidth and RF power efficient technology for telemetry applications // International Telemetering Conference Proceedings. International Foundation for Telemetering. 1997.
Date of receipt: 12 сентября 2017 г.