350 rub
Journal Radioengineering №9 for 2016 г.
Article in number:
Optimization of multivariate statistical process control
Authors:
V.N. Klyachkin - Dr. Sc. (Eng.), Professor, Department «Applied Mathematics and Informatics», Ulyanovsk State Technical University E-mail: v_kl@mail.ru E.A. Zentsova - Post-graduate Student, Department «Applied Mathematics and Informatics», Ulyanovsk State Technical University E-mail: e_zentsova@mail.ru
Abstract:
Quality assurance in radio electronics equipment manufacturing is largely connected with the stability assurance of the corresponding process. Ways to assess stability of statistically independent and related quality characteristics while investigating multivariate process are different. The most widely used tools for the former are Shewhart control charts for mean and range or standard deviation and Hotelling multivariate control charts - for the latter. Traditionally, control limits and sample size are determined according to statistical criteria, and the frequency of sampling is treated analytically depending on the process behavior. However, this approach doesn-t take into consideration such economic consequences as the costs of sampling and testing, the costs of repairing or correcting the process, the costs incurred by false alarms and the costs associated with producing nonconforming items. The main objective of this study is to determine the parameters of multivariate statistical process control in order to ensure that the criteria of effectiveness are fulfilled and optimized.
Pages: 48-51
References

 

  1. Kljachkin V.N. Modeli i metody statisticheskogo kontrolja mnogoparametricheskogo tekhnologicheskogo processa. M.: FIZMATLIT. 2011. 196 s.
  2. Kljachkin V.N., Kravcov JU.A. Obespechenie stabilnosti parametrov termoprofilja na osnove statisticheskogo kontrolja processa pajjki // Radiopromyshlennost. 2015. № 4. S. 139−146.
  3. Kljachkin V.N. Statisticheskie metody v upravlenii kachestvom: kompjuternye tekhnologii. M.: Finansy i statistika, INFRA‑M. 2009. 304 s.
  4. Montgomery D.C. Introduction to statistical quality control. New York: John Wiley and Sons. 2009. 754 r.
  5. Kljachkin V.N., Svjatova T.I. Statisticheskijj kontrol tekhnologicheskogo rassejanija v mnogoparametricheskom processe // Avtomatizacija i sovremennye tekhnologii. 2013. № 12. S. 22−25.
  6. Svjatova T.I., Kljachkin V.N. Mnogomernyjj statisticheskijj kontrol tekhnologicheskogo rassejanija processa // Radiotekhnika. 2014. № 11. S. 123−126.
  7. Svjatova T.I., Kljachkin V.N. Algoritm ehksponencialno vzveshennykh skolzjashhikh srednikh dlja mnogomernogo statisticheskogo kontrolja rassejanija processa // Radiotekhnika. 2015. № 6. S. 42−44.
  8. Mittag KH., Rinne KH. Statisticheskie metody obespechenija kachestva / Per. s nem. / Pod red. B.N. Markova. M.: Mashinostroenie. 1995. 616 s.
  9. Duncan A.J. The economic design of x-chart used to maintain current control of the process // Journal of the American Statistical Association. 1956. V. 51. P. 228−242.
  10. Bahiraee E., Raissi S. Economic design of Hotelling-s T2 control chart on the presence of fixed sampling rate and exponentially assignable causes // Journal of Industrial Engineering International. 2014. V. 10. P. 229−238.
  11. Chou C.Y., Chen C.H. Economic design of variable sampling intervals T2 control charts using genetic algorithms // Expert Systems Appl. 2006. V. 30. P. 233−242.
  12. Zencova E.A. EHkonomicheskaja model modificirovannojj kontrolnojj karty KHotellinga // Sb. nauchnykh trudov. «Sovremennye problemy proektirovanija, proizvodstva i ehkspluatacii radiotekhnicheskikh sistem». Uljanovsk: UlGTU. 2015. S. 214−216.