350 rub
Journal Radioengineering №7 for 2016 г.
Article in number:
Novel quasi-fractal double-gap multi-beam klystron cavity class
Keywords:
3D-modeling
multi-beam klystron
interaction
single-gap cavity
double-gap cavity
quasi-fractal cavity
self-excitation
Authors:
V.A. Tsarev - Dr. Sc. (Eng.), Professor, Department «Electronic Devises and Equipment», Yuri Gagarin State Technical University of Saratov. E-mail: tsarev_va@mail.ru
D.A. Nesterov - Post-graduate Student, Department «Electronic Devises and Equipment», Yuri Gagarin State Technical University of Saratov. E-mail: enlucioro@gmail.com
Abstract:
For the first time, a common methodology for the design of new types of quasi-fractal double-gap resonators for powerful multi-beam klystrons was proposed on a basis of fractal geometry methods. A three-dimensional computer modeling was performed for the same operation conditions of single-gap and double-gap resonators. In a result of studies, there were defined the conditions, under which a klystron with a new type of resonators has not self-excitation. It was shown that in the decimeter wavelength range fractal resonators have approximately 1.4 smaller transverse dimensions, which allows one to obtain more favorable conditions for focusing of multi-beam electron flow, to reduce the weight and dimensions of the focusing solenoid.
Pages: 87-91
References
- Mandelbrot B. Fraktalnaja geometrija prirody / Per. s angl. M.: Institut kompjuternykh issledovanijj. 2002. 656 s.
- Jaggard D.L. Recent Advances in Electromagnetic Theory. On Fractal Electrodynamics Ch. N.Y.: Springer - Verlag. 1990. P. 183−224.
- Potapov A.A. Fraktaly v radiofizike i radiolokacii. M.: Logos. 2002. 664 s.
- Ye C.S., Su Y.K., Weng M.H., Wu H.W. Resonant properties of the sierpinski-based fractal resonator and its application on low-loss miniaturized dual mode bandpass filter // Microwave Opt. Tech. Letters. 2009. V. 51. № 5. P. 1358−1361.
- Jarry P., Beneat J. Design and Realizations of Miniaturized Fractal Microwave and RF Filters. Hoboken: J. Wiley & Sons: IEEE Press. 2009. 194 p.
- Kac B.M., Meshhanov V.P., Feldshtejjn A.A. Optimalnyjj sintez ustrojjstv SVCH s T‑volnami / Pod red. V.P. Meshhanova. M.: Radio i svjaz. 1984. 288 s.
- Carev V.A. EHlektrovakuumnye SVCH-pribory klistronnogo tipa s mnogomodovymi rezonatorami // Materialy 10-jj jubilejjnojj Mezhdunar. nauch.-tekhn. konf. «Aktualnye problemy ehlektronnogo priborostroenija APEHP-2012». Saratov. 19−20 sentjabrja 2012. Saratov: SGTU. 2012. S. 104−113.
- Lindenmayer A. Mathematical models for cellular interactions in development // Journal of Theoretical Biology. 1968. № 18. P. 280−315.
- Ding Y., Shen B., Cao J., Miao Y. Research Progress on S‑band Broadband Multi-Beam Klystron // Proceedings of 2009 IEEE IVEC. Rome, Italy. 28−30 April 2009. PUST. Italy. 2009. P. 537−538.
- Muchkaev V.JU., Carev V.A. REZON // Svidetelstvo ob oficialnojj registracii programmy dlja EHVM № 2011611748 ot 24.02.2011 g. 1 s.
- KHajjkov A.Z. Klistronnye usiliteli. M.: Svjaz. 1974. 392 s.
- Miroshnichenko A.JU., Carev V.A., Korchagin A.I. Dvukhzazornye rezonatory fraktalnogo tipa // Antenny. 2011. № 11. S. 63−67.