350 rub
Journal Radioengineering №7 for 2016 г.
Article in number:
Sensor based on SH0 wave in the piezoelectric plate for detection of bacterial cells in liquid phase
Authors:
I.A. Borodina - Ph. D. (Phys.-Math.), Senior Research Scientist, Laboratory of Physical Acoustics, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: borodinaia@yandex.ru B.D. Zaitsev - Dr. Sc. (Phys.-Math.), Professor, Head of Laboratory of Physical Acoustics, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: zai-boris@yandex.ru A.A. Teplykh - Ph. D. (Phys.-Math.), Senior Research Scientist, Laboratory of Physical Acoustics, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: teplykhaa@mail.ru O.I. Guliu - Dr. Sc. (Biol.), Associate Professor, Leading Research Scientist, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS (Saratov). E-mail: guliy_olga@mail.ru A.M. Shikhabudinov - Ph. D. (Phys.-Math.), Research Scientist, Laboratory of Physical Acoustics, Saratov branch of Kotel\'nikov IRE of RAS. E-mail: alex-sheih@yandex.ru I.E. Kuznetsova - Dr. Sc. (Phys.-Math.), Associate Professor, Leading Research Scientist, Laboratory of Electronic Processes in Semiconductor Devices, Kotel\'nikov IRE of RAS (Moscow). E-mail: kuziren@yandex.ru
Abstract:
At present there exists a need for electronic devices for carrying out the multiparameter express analysis of biological liquids of small volume, solving the problem of detection of bacterial cells and registering their interaction with bacteriophages, mini-antibodies, and antibodies. Today a fair amount of acoustical sensors based on various types of acoustic waves are widely used in biology. Among them the sensors using lateral electric field excited piezoelectric resonators, which allow to perform the express analysis of cells directly in liquid phase without any active layers, are most popular. However it is well known that acoustic waves in thin piezoelectric plates as compared with wavelength have the higher electrome-chanical coupling coefficient [8] and gravimetric sensitivity [9] in comparison with surface acoustic waves. This leads to the stronger influence of contacting liquid on wave parameters and more their sensitivity to the change of liquid parameters [10]. This data opens the possibility of the development of biological sensors for detection of bacterial cells directly in liquid phase by using acoustic waves in thin piezoelectric plates. The present paper is devoted to the description of the biological sensor which represents two-channel delay line based on the plate of Y-X lithium niobate with thickness of 0.2 mm. One channel of delay line was electrically shorted by thin film of aluminum deposited on the space between IDTs. The second channel was electrically open. With the help of the special glue the liquid container was glued on plate surface between transducers without appreciable increasing insertion loss of delay line. By using the developed acoustical biological sensor we experimentally investigated the specific interactions «bacterial cells - bacteri-ophages», «bacterial cells - antibodies», and «bacterial cells - mini-antibodies» directly in liquid phase. The input and output of the sensor were connected with 4 ports of the meter of S parameters (E5071C, Agilent) in the regime of measuring the phase and insertion loss of parameters S12 and S34 in time. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line. It has been found that aforementioned changes have the most values for electrically open chan-nel. This result has demonstrated that specific interactions of bacterial cells under study with bacteriophages, antibodies, and mini-antibodies lead to the increase of the electrical conductivity of cell suspension. The physical explanation of the obtained results is given. The obtained results allow to choose the optimal values of the concentration of bacteriophages, antibodies, and mini- antibodies for analysis of cell suspension. These concentrations are equal 5−10 phages per cell (for bacteriophages), 1−3 μg/ml (for antibodies), and 2−4 μl/ml (for mini- antibodies). Besides we have carried out the experiments with nonspecific interaction of cells in suspension with bacteriophages, mini-antibodies, and antibodies with the help of developed sensor. It was found that in these cases the changes in insertion loss and phase of output signal did not occur. So the described approach allows not only estimating the cells concentration but defining their type.
Pages: 53-61
References

 

  1. Andle J., Vetelino J. Acoustic wave biosensors // Sensors and actuators A. 1994. V. 44. P. 167−176.
  2. Ballantine B.S., White R.M., Martine S.J., Ricco A.J., Zellers E.T., Frye G.C., Wohltjen H. Acoustic wave sensors - theory, designe,and physico-chemical applications. Academic Press. San Diego. 1997.
  3. Anisimkin V.I., Kuznetsova I.E., Kolesov V.V., Pyataikin I.I., Sorokin V.V., Skladnev V.V. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples // Ultrasonics. 2015. V. 62. P. 156−159.
  4. Zaitsev B.D., Kuznetsova I.E., Shikhabudinov A.M., Ignatov O.V., Guliy O.I. Biologocal sensor based on a lateral electric field-excited resonator // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012. V. 59. № 5. P. 963−969.
  5. Guliy O.I., Zaitsev B.D., Kuznetsova I.E., Shikhabudinov A.M., Karavaeva O.A., Dykman L.A., Staroverov S.A., Ignatov O.V Obtaining phage mini-antibodies and microbial cells with an electroacoustic sensor // 2012. Biophysics. V. 57. № 3. P. 336−342.
  6. Guliy O.I., Zaitsev B.D., Kuznetsova I.E., Shikhabudinov A.M., Matora L.Yu., Makarikhina S.S., Ignatov O.V. Investigation of Specific interactions between microbial cells and polyclonal antibodies using a resonator with lateral electric field // Microbiology. 2013. V. 82. № 2. P. 215−223.
  7. Kuznetsova I.E., Zaitsev B.D., Joshi S.G., Borodina I.A. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalite // IEEE Trans. on UFFC. 2001. V. 48. № 1. P. 322−328.
  8. Joshi S.G., Zaitsev B.D., Kuznetsova I.E., Kuznetsova A.S. Gravimetric sensitivity of acoustic waves in piezoelectric plates // Journ. of Communicat. Technology and Electronics. 2005. V. 50. № 6. P. 647−651.
  9. Zaitsev B.D., Kuznetsova I.E., Joshi S.G., Borodina I.A. Acoustic waves in piezoelectric plates bordered with viscous and conductive liquids // Ultrasonics. 2001. V. 39. № 1. P. 45−50.
  10. Marvin D.A., Hale R.D., Nave C., Helmer-Citterich M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and Ike // Journal of Molecular Biology. 1994. V. 235. P. 260−286.
  11. Overman S.A., Tsuboi M., Thomas G.J. Subunit orientation in the filamentous virus Ff (fd, f1, M13) // Journal of Molecular Biology. 1996. V. 259. P. 331−336.
  12. Click E.M., Webster R.E. Filamentous phage infection: required interactions with the TolA protein // J. Bacteriol. 1997. V. 179. № 20. P. 6464−6471.
  13. Deng L.W., Malik P. Interaction of the globular domains of pIII protein of filamentous bacteriophage Fd with the F-pilus of Escherichia coli // Virology. 1999. V. 253. P. 271.
  14. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laborotory manual. Second ed. N.Y.: Cold Spring. Mavbov Lab. Press. 1989.
  15. Hoogenboom H.R., Griffits A.D., Johnson K.S., Chiswell D.J., Hundson P., Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (FAB) heavy and light chains // Nucleic Acids Research. 1991. V. 19. № 15. P. 4133−4137.
  16. Endemann H, Model P. Location of filamentous phage minor coat proteins in phage and in infected cells // J. Mol Biol. 1995. V. 250. № 4. P. 496−506.
  17. McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. Phage antibodies: Filamentous phage displaying antibody variable domains // Nature. 1990. V. 348. P. 552−554.
  18. Paoli G., Brewster J.D. Identification of the surface antigen recognized by a Listeria monocytogenes-specific phage-displayed antibody fragment and its presence in different physiological conditions // J. Rapid Meth. Automat. Microbiol. 2007. V. 4. P. 74−83.
  19. Williams D.D., Benedek O., Turnbough C.L. Jr. Species-specific peptide ligands for the detection of Bacillus anthracis spores // Appl. Environ. Microbiol. 2003. V. 69. P. 6288−6293.
  20. Nanduri V., Sorokulova I.B., Samoylov A., Simonian A., Petrenko V., Vodyanoy V. Phage as a molecular recognition element in biosensors immobilized by physical adsorption // Biosens. Bioelectron. 2007. V. 22. P. 986−992.
  21. Charlton K.A., Moyle S., Porter A.J.R., Harris W.J. Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library // J. Immunol. 2000. V. 164. P. 6221−6229.